Эротические рассказы

Fractures in the Horse. Группа авторовЧитать онлайн книгу.

Fractures in the Horse - Группа авторов


Скачать книгу
Seo, J., Tsuzuki, N., Haneda, S., Yamada, K., Furuoka, H., Tabata, Y. et al. (2014 Mar 18). Osteoinductivity of gelatin/β‐tricalcium phosphate sponges loaded with different concentrations of mesenchymal stem cells and bone morphogenetic protein‐2 in an equine bone defect model. Vet. Res. Commun. [Internet]. [cited 2018 Feb 17]; 38(1): 73–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24442646.

      70 70 McDuffee, L. A., Pack, L., Lores, M., Wright, G. M., Esparza‐Gonzalez, B., Masaoud, E. (2012 Oct). Osteoprogenitor cell therapy in an equine fracture model. Vet. Surg. [Internet]. [cited 2018 Feb 17]; 41(7): 773–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22804243.

      71 71 Milner, P. I., Clegg, P. D., Stewart, M. C. (2011 Aug). Stem cell–based therapies for bone repair. Vet. Clin. North Am. Equine Pract. [Internet]. [cited 2018 Feb 17]; 27(2): 299–314. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21872760.

      72 72 James, A. W., LaChaud, G., Shen, J., Asatrian, G., Nguyen, V., Zhang, X. et al. (2016 Aug). A review of the clinical side effects of bone morphogenetic protein‐2. Tissue Eng. Part B Rev. [Internet]. [cited 2018 Feb 17]; 22(4): 284–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26857241.

      73 73 Southwood, L. L., Kawcak, C. E., Hidaka, C., Mcilwraith, C. W., Werpy, N., Macleay, J. et al. (2012 Feb). Evaluation of direct in vivo gene transfer in an equine metacarpal IV ostectomy model using an adenoviral vector encoding the bone morphogenetic protein‐2 and protein‐7 gene. Vet. Surg. [Internet]. [cited 2018 Feb 17]; 41(3): 345–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22308976.

      74 74 Weisrock, K. U., Winkelsett, S., Martin‐Rosset, W., Forssmann, W‐G., Parvizi, N., Coenen, M. et al. (2011 Nov). Long‐term effects of intermittent equine parathyroid hormone fragment (ePTH‐1‐37) administration on bone metabolism in healthy horses. Vet. J. [Internet]. [cited 2018 Jan 30]; 190(2): e130–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21310635.

      75 75 Fuerst, A., Derungs, S., von Rechenberg, B., Auer, J. A., Schense, J., Watson, J. (2007 Mar). Use of a parathyroid hormone peptide (PTH 1?34)‐enriched fibrin hydrogel for the treatment of a subchondral cystic lesion in the proximal interphalangeal joint of a warmblood filly. J. Vet. Med. Ser. A [Internet]. [cited 2018 Jan 30]; 54(2): 107–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17305975.

      76 76 Wang, W., Yeung, K. W. K. (2017 Dec 1). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. [Internet]. [cited 2018 Jan 30]; 2(4): 224–47. Available from: https://www.sciencedirect.com/science/article/pii/S2452199X17300464.

      77 77 Bodo, G., Hangody, L., Modis, L., Hurtig, M. (2004 Nov). Autologous osteochondral grafting (Mosaic Arthroplasty) for treatment of subchondral cystic lesions in the equine stifle and fetlock joints. Vet. Surg. [Internet]. [cited 2018 Jan 30];33(6):588–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15659013.

      78 78 Kawcak, C. E., Trotter, G. W., Powers, B. E., Park, R. D., Turner, A. S. Comparison of bone healing by demineralized bone matrix and autogenous cancellous bone in horses. Vet. Surg. [Internet]. [cited 2018 Feb 17];29(3):218–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10871223.

      79 79 Ortved, K. F., Nixon, A. J. (2016 Feb). Cell‐based cartilage repair strategies in the horse. Vet. J. [Internet]. [cited 2018 Feb 17];208:1–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26702950.

      80 80 Richardson, D. W. (2008 Dec). Complications of orthopaedic surgery in horses. Vet. Clin. North Am. Equine Pract. [Internet]. [cited 2018 Feb 17];24(3):591–610, viii. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0749073908000655.

      81 81 Daish, C., Blanchard, R., Fox, K. et al. (2018). The application of pulsed electromagnetic fields (PEMFs) for bone fracture repair: past and perspective findings. Ann. Biomed. Eng. 46: 525–542.

      82 82 Aleem, I.S., Aleem, I., Evaniew, N. et al. (2016). Efficacy of electrical stimulators for bone healing: a meta‐analysis of randomized sham‐controlled trials. Sci. Rep. 6: 31724.

      83 83 Mollon, B., da Silva, V., Busse, J.W. et al. (2008). Electrical stimulation for long‐bone fracture‐healing: a meta‐analysis of randomized controlled trials. J. Bone Joint Surg. Am. 90 (11): 2322–2330.

      84 84 Siska, P.A., Gruen, G.S., and Pape, H.C. (2008). External adjuncts to enhance fracture healing: what is the role of ultrasound? Injury 39 (10): 1095–1105.

      85 85 Claes, L. and Willie, B. (2007). The enhancement of bone regeneration by ultrasound. Prog. Biophys. Mol. Biol. 93 (1–3): 384–398.

      86 86 Busse, J.W., Kaur, J., Mollon, B. et al. (2009). Low intensity pulsed ultrasonography for fractures: systematic review of randomised controlled trials. Br. Med. J. 338: b351.

      87 87 Ebrahim, S., Mollon, B., Bance, S. et al. (2014). Low‐intensity pulsed ultrasonography versus electrical stimulation for fracture healing: a systematic review and network meta‐analysis. Can. J. Surg. 57 (3): E105–E118.

      88 88 Griffin, X.L., Parsons, N., Costa, M.L., and Metcalfe, D. (2014). Ultrasound and shockwave therapy for acute fractures in adults. Cochrane Database Syst. Rev. 6: CD008579.

      89 89 McClure, S.R., Miles, K., VanSickle, D., and South, T. (2010). The effect of variable waveform low‐intensity pulsed ultrasound in a fourth metacarpal osteotomy gap model in horses. Ultrasound Med. Biol. 36: 1298–1305.

      90 90 Schaden, W., Mittermayr, R., Haffner, N. et al. (2015). Extracorporeal shockwave therapy (ESWT) – first choice treatment of fracture non‐unions? Int. J. Surg. 24 (Pt B): 179–183.

      91 91 Frisbie, D.D., Kawcak, C.E., and McIlwraith, C.W. (2009). Evaluation of the effect of extracorporeal shock wave treatment on experimentally induced osteoarthritis in middle carpal joints of horses. Am. J. Vet. Res. 70: 449–454.

      92 92 Kawcak, C.E., Frisbie, D.D., and McIlwraith, C.W. (2011). Effects of extracorporeal shock wave therapy and polysulfated glycosaminoglycan treatment on subchondral bone, serum biomarkers, and synovial fluid biomarkers in horses with induced osteoarthritis. Am. J. Vet. Res. 72: 772–779.

      93 93 Dahlberg, J.A., McClure, S.R., Evans, R.B., and Reinertson, E.L. (2006). Force platform evaluation of lameness severity following extracorporeal shock wave therapy in horses with unilateral forelimb lameness. J. Am. Vet. Med. Assoc. 229: 100–103.

      94 94 McClure, S.R., Van Sickle, D., and White, M.R. (2004). Effects of extracorporeal shock wave therapy on bone. Vet. Surg. 33: 40–48.

      95 95 Da Costa Gómez, T.M., Radtke, C.L., Kalscheur, V.L. et al. (2004). Effect of focused and radial extracorporeal shock wave therapy on equine bone microdamage. Vet. Surg. 33: 49–55.

      96 96 Wang, J., Leung, K., Chow, S., and Cheung, W. (2017). The effect of whole body vibration on fracture healing – a systematic review. Eur. Cell. Mater. 34: 108–127.

      97 97 Schlachter, C. and Lewis, C. (2016). Electrophysical therapies for the equine athlete. Vet. Clin. North Am. Equine Pract. 32: 127–147.

      98 98 Barilaro, G., Francesco Masala, I., Parracchini, R. et al. (2017). The role of hyperbaric oxygen therapy in orthopedics and rheumatological diseases. Isr. Med. Assoc. J. 19 (7): 429–434.

      Конец


Скачать книгу

Яндекс.Метрика