Эротические рассказы

Handbook of Aggregation-Induced Emission, Volume 3. Группа авторовЧитать онлайн книгу.

Handbook of Aggregation-Induced Emission, Volume 3 - Группа авторов


Скачать книгу
light‐emitting devices based on fluorophores with aggregation‐induced emission enhancement. Chem. Mater. 2012; 24(11):2178–85.

      79 79 Chen, S., Kwok, H. S., Zhao, Z., Tang, B. Z. P‐165: efficient RGBW OLEDs based on 4,4′‐Bis (1,2,2‐triphenylvinyl)biphenyl. SID Symp. Dig. Tech. Pap. 2010; 41(1):1867–70.

      80 80 Zhao, Z., Lam, J. W. Y., Tang, B. Z. Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light‐emitting diodes. J. Mater. Chem. 2012; 22(45):23726–40.

      81 81 Chen, S., Zhao, Z., Tang, B. Z., Kwok, H. S. Non‐doped white organic light‐emitting diodes based on aggregation‐induced emission. J. Phys. D Appl. Phys. 2010; 43(9):095101.

      82 82 Chen, S., Zhao, Z., Wang, Z., Lu, P., Gao, Z., Ma, Y., et al. Bi‐layer non‐doped small‐molecular white organic light‐emitting diodes with high colour stability. J. Phys. D Appl. Phys. 2011; 44(14):145101.

      83 83 Liu, S., Li, F., Diao, Q., Ma, Y. Aggregation‐induced enhanced emission materials for efficient white organic light‐emitting devices. Org. Electron. 2010; 11(4):613–7.

      84 84 Lee, Y.‐T., Chang, Y.‐T., Chen, C.‐T., Chen, C.‐T. The first aggregation‐induced emission fluorophore as a solution processed host material in hybrid white organic light‐emitting diodes. J. Mater. Chem. C. 2016; 4(29):7020–5.

      85 85 Liu, B., Nie, H., Lin, G., Hu, S., Gao, D., Zou, J., et al. High‐performance doping‐free hybrid white OLEDs based on blue aggregation‐induced emission luminogens. ACS Appl. Mater. Interf. 2017; 9(39):34162–71.

      86 86 Chen, B., Liu, B., Zeng, J., Nie, H., Xiong, Y., Zou, J., et al. Efficient bipolar blue AIEgens for high‐performance nondoped blue OLEDs and hybrid white OLEDs. Adv. Funct. Mater. 2018; 28(40):1803369.

      87 87 Xu, Z., Gong, Y., Dai, Y., Sun, Q., Qiao, X., Yang, D., et al. High efficiency and low roll‐off hybrid WOLEDs by using a deep blue aggregation‐induced emission material simultaneously as blue emitter and phosphor host. Adv. Opt. Mater. 2019; 7(9):1801539.

      88 88 Xu, Z., Gu, J., Qiao, X., Qin, A., Tang, B. Z., Ma, D. Highly efficient deep blue aggregation‐induced emission organic molecule: a promising multifunctional electroluminescence material for blue/green/orange/red/white OLEDs with superior efficiency and low roll‐off. ACS Photonics. 2019; 6(3):767–78.

      89 89 Duggal, A. R., Shiang, J. J., Heller, C. M., Foust, D. F. Organic light‐emitting devices for illumination quality white light. Appl. Phys. Lett. 2002; 80(19):3470–2.

      90 90 Krummacher, B. C., Choong, V.‐E., Mathai, M. K., Choulis, S. A., So, F., Jermann, F., et al. Highly efficient white organic light‐emitting diode. Appl. Phys. Lett. 2006; 88(11):113506.

      91 91 Chen, S., Kwok, H.‐S. Top‐emitting white organic light‐emitting diodes with a color conversion cap layer. Org. Electron. 2011; 12(4):677–81.

      92 92 Guo, J. J., Zhao, Z. J., Tang, B. Z. Purely organic materials with aggregation‐induced delayed fluorescence for efficient nondoped OLEDs. Adv. Optical Mater. 2018; 6(15):11.

      93 93 Ma, Y., Zhang, H., Shen, J., Che, C. Electroluminescence from triplet metal–ligand charge‐transfer excited state of transition metal complexes. Synth. Met. 1998; 94(3):245–8.

      94 94 Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature. 1998; 395:151.

      95 95 Huckaba, A. J., Nazeeruddin, M. K. Strategies for tuning emission energy in phosphorescent Ir(III) complexes. Comment. Inorg. Chem. 2017; 37(3):117–45.

      96 96 Godin, R., Wang, Y., Zwijnenburg, M. A., Tang, J., Durrant, J. R. Time‐resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 2017; 139(14):5216–24.

      97 97 Tang, M. C., Chan, A. K. W., Chan, M. Y., Yam, V. W. W. Platinum and gold complexes for OLEDs. Top. Curr. Chem. 2016; 374(4):43.

      98 98 Strassner, T. Phosphorescent platinum(II) complexes with CC cyclometalated NHC ligands. Acc. Chem. Res. 2016; 49(12):2680–9.

      99 99 Liu, Z., Qiu, J., Wei, F., Wang, J., Liu, X., Helander, M. G., et al. Simple and high efficiency phosphorescence organic light‐emitting diodes with codeposited copper(I) emitter. Chem. Mater. 2014; 26(7):2368–73.

      100 100 Wu, F., Li, J., Tong, H., Li, Z., Adachi, C., Langlois, A., et al. Phosphorescent Cu(I) complexes based on bis(pyrazol‐1‐yl‐methyl)‐pyridine derivatives for organic light‐emitting diodes. J. Mater. Chem. C. 2015; 3(1):138–46.

      101 101 Liao, J.‐L., Chi, Y., Yeh, C.‐C., Kao, H.‐C., Chang, C.‐H., Fox, M. A., et al. Near infrared‐emitting tris‐bidentate Os(II) phosphors: control of excited state characteristics and fabrication of OLEDs. J. Mater. Chem. C. 2015; 3(19):4910–20.

      102 102 Ma, H. L., Lv, A. Q., Fu, L. S., Wang, S., An, Z. F., Shi, H. F., et al. Room‐temperature phosphorescence in metal‐free organic materials. Ann. Phys. Berlin. 2019; 531(7):14.

      103 103 Gan, N., Shi H. F., An, Z. F., Huang, W. Recent advances in polymer‐based metal‐free room‐temperature phosphorescent materials. Adv. Funct. Mater. 2018; 28(51):24.

      104 104 Zhang, G., Chen, B., Huang, W., Su, H., Miao, H., Zhang, X. Unexpected chromophore‐solvent reaction leads to bicomponent aggregation‐induced phosphorescence. Angew. Chem. Int. Ed. 2020;59:10023–6.

      105 105 Zhang, T., Ma, X., Wu, H., Zhu, L., Zhao, Y., Tian, H. Molecular engineering for metal‐free amorphous materials with room‐temperature phosphorescence. Angew. Chem. Int. Ed. 2020;59:11206–16.

      106 106 Manimaran, B., Thanasekaran, P., Rajendran, T., Lin, R.‐J., Chang, I. J., Lee, G.‐H., et al. Luminescence enhancement induced by aggregation of alkoxy‐bridged rhenium(I) molecular rectangles. Inorg. Chem. 2002; 41(21):5323–5.

      107 107 Climent, C., Alam, P., Pasha, S. S., Kaur, G., Choudhury, A. R., Laskar, I. R., et al. Dual emission and multi‐stimuli‐response in iridium(III) complexes with aggregation‐induced enhanced emission: applications for quantitative CO2 detection. J. Mater. Chem. C. 2017; 5(31):7784–98.

      108 108 Wen, L.‐L., Hou, X.‐G., Shan, G.‐G., Song, W.‐L., Zhang, S.‐R., Sun, H.‐Z., et al. Rational molecular design of aggregation‐induced emission cationic Ir(III) phosphors achieving supersensitive and selective detection of nitroaromatic explosives. J. Mater. Chem. C. 2017; 5(41):10847–54.

      109 109 Li, P., Zeng, Q.‐Y., Sun, H.‐Z., Akhtar, M., Shan, G.‐G., Hou, X.‐G., et al. Aggregation‐induced emission (AIE) active iridium complexes toward highly efficient single‐layer non‐doped electroluminescent devices. J. Mater. Chem. C. 2016; 4(44):10464–70.

      110 110 Zhu, Y.‐C., Zhou, L., Li, H.‐Y., Xu, Q.‐L., Teng, M.‐Y., Zheng, Y.‐X., et al. Highly efficient green and blue‐green phosphorescent OLEDs based on iridium complexes with the tetraphenylimidodiphosphinate ligand. Adv. Mater. 2011; 23(35):4041–6.

      111 111 Liu, J., Shi, X., Wu, X., Wang, J., Min, Z., Wang, Y., et al. Achieving above 30% external quantum efficiency for inverted phosphorescence organic light‐emitting diodes based on ultrathin emitting layer. Org. Electron. 2014; 15(10):2492–8.

      112 112 Sun, Y., Yang, X., Liu, B., Guo, H., Zhou, G., Ma, W., et al. Aggregation‐induced emission triggered by the radiative‐transition‐switch of a cyclometallated Pt(II) complex. J. Mater. Chem. C. 2019; 7(40):12552–9.

      113 113 Baleizão, C., Berberan‐Santos, M. N. Thermally activated delayed fluorescence in fullerenes. Ann. N. Y. Acad. Sci. 2008; 1130(1):224–34.

      114 114 Parker, C. A., Hatchard, C. G. Triplet–singlet emission in fluid solutions. Phosphorescence of eosin. Trans. Faraday Soc. 1961; 57:1894–904.

      115 115 Yang, Z., Mao, Z., Xie, Z., Zhang, Y., Liu, S., Zhao, J., et al. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 2017; 46(3):915–1016.

      116 116 Uoyama, H., Goushi, K.,


Скачать книгу
Яндекс.Метрика