Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторовЧитать онлайн книгу.
C.S., Juri, D.E., Do, K., Bernauer, A.M., Thomas, C.L., Damiani, L.A., Tessema, M., Leng, S., and Belinsky, S.A. (2011). EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res. 71: 3087–3097.
128 Temoche-Diaz, M.M., Shurtleff, M.J., Nottingham, R.M., Yao, J., Fadadu, R.P., Lambowitz, A.M., and Schekman, R. (2019). Distinct mechanisms of microRNA sorting into cancer cell-derived extracellular vesicle subtypes. eLife 8: e47544.
129 Thomas, R.S., Allen, B.C., Nong, A., Yang, L., Bermudez, E., and Clewell, H.J. 3RD, and Andersen, M.E. (2007). A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure. Toxicol. Sci. 98: 240–248.
130 Thompson, K.L., Boitier, E., Chen, T., Couttet, P., Ellinger-Ziegelbauer, H., Goetschy, M., Guillemain, G., Kanki, M., Kelsall, J., Mariet, C., De La Moureyre-Spire, C., Mouritzen, P., Nassirpour, R., O’Lone, R., Pine, P.S., Rosenzweig, B.A., Sharapova, T., Smith, A., Uchiyama, H., Yan, J., Yuen, P.S., and Wolfinger, R. (2016). Absolute measurement of cardiac injury-induced micrornas in biofluids across multiple test sites. Toxicol. Sci. 154: 115–125.
131 Thulin, P., Hornby, R.J., Auli, M., Nordahl, G., Antoine, D.J., Starkey Lewis, P., Goldring, C.E., Park, B.K., Prats, N., Glinghammar, B., and Schuppe-Koistinen, I. (2017). A longitudinal assessment of miR-122 and GLDH as biomarkers of drug-induced liver injury in the rat. Biomarkers 22: 461–469.
132 Tomasetti, M., Gaetani, S., Monaco, F., Neuzil, J., and Santarelli, L. (2019). Epigenetic regulation of mirna expression in malignant mesothelioma: MiRNAs as biomarkers of early diagnosis and therapy. Front Oncol. 9: 1293.
133 Tribolet, L., Kerr, E., Cowled, C., Bean, A.G.D., Stewart, C.R., Dearnley, M., and Farr, R.J. (2020). MicroRNA biomarkers for infectious diseases: From basic research to biosensing. Front Microbiol. 11: 1197.
134 Tsamou, M., Vrijens, K., Madhloum, N., Lefebvre, W., Vanpoucke, C., and Nawrot, T.S. (2018). Air pollution-induced placental epigenetic alterations in early life: A candidate miRNA approach. Epigenetics 13: 135–146.
135 Tumolo, M.R., Panico, A., De Donno, A., Mincarone, P., Leo, C.G., Guarino, R., Bagordo, F., Serio, F., Idolo, A., Grassi, T., and Sabina, S. (2020). The expression of microRNAs and exposure to environmental contaminants related to human health: A review. Int. J. Environ. Health Res. (online, May 12): 1–23. doi: 10.1016/j.hoc.2021.05.005.
136 Turchinovich, A., Drapkina, O., and Tonevitsky, A. (2019). Transcriptome of Extracellular Vesicles: State-of-the-Art. Front Immunol. 10: 202.
137 Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. (2011). Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39: 7223–7233.
138 Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9: 654–659.
139 Van Pottelberge, G.R., Mestdagh, P., Bracke, K.R., Thas, O., Van Durme, Y.M., Joos, G.F., Vandesompele, J., and Brusselle, G.G. (2011). MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 183: 898–906.
140 Vandana Saini, R.D, Suneja, S., Gangopadhyay, S., and Kaur, C. (2021). Can microRNA become next-generation tools in molecular diagnostics and therapeutics? A systematic review. Egypt. J. Med. Hum. Genet. 22: 1–9.
141 Vickers, K.C., Palmisano, B.T., Shoucri, B.M., Shamburek, R.D., and Remaley, A.T. (2011). MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13: 423–433.
142 Vigneron, N., Meryet-Figuiere, M., Guttin, A., Issartel, J.P., Lambert, B., Briand, M., Louis, M.H., Vernon, M., Lebailly, P., Lecluse, Y., Joly, F., Krieger, S., Lheureux, S., Clarisse, B., Leconte, A., Gauduchon, P., Poulain, L., and Denoyelle, C. (2016). Towards a new standardized method for circulating miRNAs profiling in clinical studies: Interest of the exogenous normalization to improve miRNA signature accuracy. Mol. Oncol. 10: 981–992.
143 Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Perez-Hernandez, D., Vazquez, J., Martin-Cofreces, N., Martinez-Herrera, D.J., Pascual-Montano, A., Mittelbrunn, M., and Sanchez-Madrid, F. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4: 2980.
144 Vogt, J., Sheinson, D., Katavolos, P., Irimagawa, H., Tseng, M., Alatsis, K.R., and Proctor, W.R. (2019). Variance component analysis of circulating miR-122 in serum from healthy human volunteers. PLoS One 14: e0220406.
145 Vrijens, K., Bollati, V., and Nawrot, T.S. (2015). MicroRNAs as potential signatures of environmental exposure or effect: A systematic review. Environ. Health Perspect. 123: 399–411.
146 Wallace, D.R., Taalab, Y.M., Heinze, S., Tariba Lovakovic, B., Pizent, A., Renieri, E., Tsatsakis, A., Farooqi, A.A., Javorac, D., Andjelkovic, M., Bulat, Z., Antonijevic, B., and Buha Djordjevic, A. (2020). Toxic-metal-induced alteration in miRNA expression profile as a proposed mechanism for disease development. cells 9.
147 Wang, G.K., Zhu, J.Q., Zhang, J.T., Li, Q., Li, Y., He, J., Qin, Y.W., and Jing, Q. (2010a). Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur. Heart. J. 31: 659–666.
148 Wang, J., Zhang, Y., Zhang, W., Jin, Y., and Dai, J. (2012). Association of perfluorooctanoic acid with HDL cholesterol and circulating miR-26b and miR-199-3p in workers of a fluorochemical plant and nearby residents. Environ. Sci. Technol. 46: 9274–9281.
149 Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., Hood, L.E., and Galas, D.J. (2009). Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl. Acad. Sci. USA 106: 4402–4407.
150 Wang, M., Ye, Y., Qian, H., Song, Z., Jia, X., Zhang, Z., Zhou, J., and Ni, C. (2010b). Common genetic variants in pre-microRNAs are associated with risk of coal workers’ pneumoconiosis. J. Hum. Genet. 55: 13–17.
151 Wang, T., Xu, H., Qi, M., Yan, S., and Tian, X. (2018). miRNA dysregulation and the risk of metastasis and invasion in papillary thyroid cancer: A systematic review and meta-analysis. Oncotarget 9: 5473–5479.
152 Wang, W., Zhang, H., Duan, X., Feng, X., Wang, T., Wang, P., Ding, M., Zhou, X., Liu, S., Li, L., Liu, J., Tang, L., Niu, X., Zhang, Y., Li, G., Yao, W., and Yang, Y. (2019). Association of genetic polymorphisms of miR-145 gene with telomere length in omethoate-exposed workers. Ecotoxicol. Environ. Saf. 172: 82–88.
153 Weber, D.G., Johnen, G., Bryk, O., Jockel, K.H., and Bruning, T. (2012). Identification of miRNA-103 in the cellular fraction of human peripheral blood as a potential biomarker for malignant mesothelioma–a pilot study. PLoS One 7: e30221.
154 Weber, J.A., Baxter, D.H., Zhang, S., Huang, D.Y., Huang, K.H., Lee, M.J., Galas, D.J., and Wang, K. (2010). The microRNA spectrum in 12 body fluids. Clin. Chem. 56: 1733–1741.
155 Webster, A.F., Chepelev, N., Gagne, R., Kuo, B., Recio, L., Williams, A., and Yauk, C.L. (2015). Impact of genomics platform and statistical filtering on transcriptional benchmark doses (BMD) and multiple approaches for selection of chemical point of departure (PoD). PLoS One 10: e0136764.
156 Weldon, B.A., Shubin, S.P., Smith, M.N., Workman, T., Artemenko, A., Griffith, W.C., Thompson, B., and Faustman, E.M. (2016). Urinary microRNAs as potential biomarkers of pesticide exposure. Toxicol. Appl. Pharmacol. 312: 19–25.
157 World Health Organization and International Programme on Chemical Safety (1993). Biomarkers and Risk Assessment: Concepts and Principles, published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. World Health Organization. https://apps.who.int/iris/handle/10665/39037.
158 Xu, M., Yu, Z., Hu, F., Zhang, H., Zhong, L., Han, L., An, Y., Zhu, B., and Zhang, H. (2017). Identification of differential