Core Microbiome. Группа авторовЧитать онлайн книгу.
target="_blank" rel="nofollow" href="#ulink_e3ba41bc-0c85-5225-ad47-4623eec5f770">58 Zeng, J., Xu, T., Cao, L., Tong, C., Zhang, X., Luo, D., Han, S., Pang, P., Fu, W., Yan, J., and Liu, X. (2018). The role of iron competition in the antagonistic action of the rice endophyte Streptomyces sporocinereus OsiSh-2 against the pathogen Magnaporthe oryzae. Microbial Ecology Nov 76 (4): 1021–1029.
59 59 Mousa, W.K., Shearer, C., Limay-Rios, V., Ettinger, C.L., Eisen, J.A., and Raizada, M.N. (2016). Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nature Microbiology Sep 26 1 (12): 1–2.
60 60 Arnold, A.E., Mejía, L.C., Kyllo, D., Rojas, E.I., Maynard, Z., Robbins, N., and Herre, E.A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences Dec 23 100 (26): 15649–15654.
61 61 Mousa, W.K. and Raizada, M.N. (2013). The diversity of antimicrobial secondary metabolites produced by fungal endophytes: An interdisciplinary perspective. Frontiers in Microbiology Mar 27 4: 65.
62 62 Kusari, S., Hertweck, C., and Spiteller, M. (2012). Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chemistry & Biology Jul 27 19 (7): 792–798.
63 63 Silva, G.H., Teles, H.L., Zanardi, L.M., Young, M.C., Eberlin, M.N., Hadad, R., Pfenning, L.H., Costa-Neto, C.M., Castro-Gamboa, I., Da Silva Bolzani, V., and Araújo, Â.R. (2006). Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry Sep 1 67 (17): 1964–1969.
64 64 Abdallah, R.A., Steel, C., Garagounis, C., Nefzi, A., Jabnoun-Khiareddine, H., Papadopoulou, K.K., and Daami-Remadi, M. (2017). Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of Fusarium wilt by endophytic Bacillus spp. in tomato. Crop Protection Sep 1 99: 45–58.
65 65 Munjal, V., Nadakkakath, A.V., Sheoran, N., Kundu, A., Venugopal, V., Subaharan, K., Rajamma, S., Eapen, S.J., and Kumar, A. (2016). Genotyping and identification of broad-spectrum antimicrobial volatiles in black pepper root endophytic biocontrol agent, Bacillus megaterium BP17. Biological Control Jan 1 92: 66–76.
66 66 Huang, Y., Xu, C., Ma, L., Zhang, K., Duan, C., and Mo, M. (2010). Characterisation of volatiles produced from Bacillus megaterium YFM3. 25 and their nematicidal activity against Meloidogyne incognita. European Journal of Plant Pathology Mar 126 (3): 417–422.
67 67 Athukorala, S.N., Fernando, W.D., Rashid, K.Y., and De Kievit, T. (2010). The role of volatile and non-volatile antibiotics produced by Pseudomonas chlororaphis strain PA23 in its root colonization and control of Sclerotinia sclerotiorum. Biocontrol Science and Technology Jan 1 20 (8): 875–890.
68 68 Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., and Piechulla, B. (2009). Bacterial volatiles and their action potential. Applied Microbiology and Biotechnology Jan 81 (6): 1001–1012.
69 69 Pieterse, C.M., Van Der Does, D., Zamioudis, C., Leon-Reyes, A., and Van Wees, S.C. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology Nov 10 (28): 489–521.
70 70 Niu, D.D., Liu, H.X., Jiang, C.H., Wang, Y.P., Wang, Q.Y., Jin, H.L., and Guo, J.H. (2011). The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate and jasmonate/ethylene-dependent signaling pathways. Molecular Plant–Microbe Interactions May 24 (5): 533–542.
71 71 Conn, V.M., Walker, A.R., and Franco, C.M. (2008). Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Molecular Plant–Microbe Interactions Feb 21 (2): 208–218.
72 72 Bogner, C.W., Kariuki, G.M., Elashry, A., Sichtermann, G., Buch, A.K., Mishra, B., Thines, M., Grundler, F.M., and Schouten, A. (2016). Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycological Progress Mar 1 15 (3): 30.
73 73 Su, L., Shen, Z., Ruan, Y., Tao, C., Chao, Y., Li, R., and Shen, Q. (2017). Isolation of antagonistic endophytes from banana roots against Meloidogyne javanica and their effects on soil nematode community. Frontiers in Microbiology Oct 26 (8): 2070.
74 74 Li, H., Zhao, J., Feng, H., Huang, L., and Kang, Z. (2013). Biological control of wheat stripe rust by an endophytic Bacillus subtilis strain E1R-j in greenhouse and field trials. Crop Protection Jan 1 43: 201–206.
75 75 Ho, Y.N., Chiang, H.M., Chao, C.P., Su, C.C., Hsu, H.F., Guo, C.T., Hsieh, J.L., and Huang, C.C. (2015). In planta biocontrol of soilborne Fusarium wilt of banana through a plant endophytic bacterium, Burkholderia cenocepacia 869T2. Plant and Soil Feb 387 (1): 295–306.
76 76 Sun, K., Xie, X.G., Lu, F., Zhang, F.M., Zhang, W., He, W., and Dai, C.C. (2021). Peanut preinoculation with a root endophyte induces plant resistance to soilborne pathogen Fusarium oxysporum via activation of salicylic acid-dependent signaling. Plant and Soil Jan 12: 1–6.
77 77 Xie, X.G., Zhao, Y.Y., Yang, Y., Lu, F., and Dai, C.C. (2020). Endophytic Fungus Alleviates Soil Sickness in Peanut Crops by Improving the Carbon Metabolism and Rhizosphere Bacterial Diversity. Microbial Ecology Jul 12: 1–3.
78 78 Yanni, Y.G. and Dazzo, F.B. (2010). Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. Trifolii in Extensive Field Inoculation Trials within the Egypt Nile Delta. Plant and Soil. Nov 336 (1): 129–142.
79 79 Mercier, J. and Jiménez, J.I. (2004). Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biology and Technology Jan 1 31 (1): 1–8.
80 80 Stinson, A.M., Zidack, N.K., Strobel, G.A., and Jacobsen, B.J. (2003). Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Disease Nov 87 (11): 1349–1354.
81 81 Last, F.T. (1955). Seasonal incidence of Sporobolomyces on cereal leaves. Transactions of the British Mycological Society Sep 38 (3): 221–239.
82 82 Ruinen, J. (1956). Occurrence of Beijerinckia species in the ‘phyllosphere’. Nature Feb 4 177: 220–221.
83 83 Maignan, L., DeForce, E.A., Chafee, M.E., Murat Eren, A., and Simmons, S.L. (2014). Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio Jan 21 5 (1): 1–10.
84 84