Эротические рассказы

Core Microbiome. Группа авторовЧитать онлайн книгу.

Core Microbiome - Группа авторов


Скачать книгу
Sarah, R., Tabassum, B., Idrees, N., and Hussain, M.K. (2019). Bio-active Compounds Isolated from Neem Tree and Their Applications. In: Natural Bio-active Compounds, (eds.M.Akhtar, M.Swamy and U.Sinniah). Singapore: Springer. https://doi.org/10.1007/978-981-13-7154-7_1

      10 10 Jerobin, J., Makwana, P., Kumar, R.S.S., Sundaramoorthy, R., Mukharjee, A., and Chandrasekaran, N. (2015). Antibacterial activity of neem nanoemulsion and its toxicity assessment on human lymphocytes in vitro. International Journal of Nanomedicine 10 (77): 86.

      11 11 Almas, K. (1999). The antimicrobial effects of extracts of Azadirachta indica (Neem) and Salvadora persica (Arak) chewing sticks. Indian Journal of Dental Research. 10 (1): 23–26.

      12 12 Sai Ram, M. et al. (2000). Effect of Kombucha tea on Chromate(VI)-induced oxidative stress in albino rats. Journal of Ethnopharmacology 71 (1–2): 235-40.

      13 13 Baswa, M., Rath, C.C., Dash, S.K., and Mishra, R.K. (2001). Antibacterial activity of Karanj (Pongamia pinnata) and Neem (Azadirachta indica) seed oil: a preliminary report. Microbios 105 (412): 183–189.

      14 14 Compant, S., Samad, A., Faist, H., and Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research 19: 29–37.

      15 15 Mengoni, A., Pini, F., Huang, L.N., Shu, W.S., and Bazzicalupo, M. (2009). Plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Alyssum bertolonii desv. Microbial Ecology 58: 660–667.

      16 16 Mengoni, A., Schat, H., and Vangronsveld, J. (2010). Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant and Soil 331: 5–16.

      17 17 Thijs, S., Sillen, W., Rineau, F., Weyens, N., and Vangronsveld, J. (2016). Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: Engineering the metaorganism. Frontiers in Microbiology 7: 341.

      18 18 Zhao, J., Chan, T., Mou, Y., and Zhou, L. (2011). Plant-derived bioactive compounds produced by endophytic fungi. Mini Reviews in Medicinal Chemistry 11: 159–168. DOI: 10.2174/138955711794519492

      19 19 Morsy, N.M. (2014). Phytochemical analysis of biologically active constituents of medicinal plants. Main Group Chemistry 13: 7–21. DOI: 10.3233/MGC-130117

      20 20 Qi, X., Wang, E., Xing, M., Zhao, W., and Chen, X. (2012). Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World Journal of Microbiology and Biotechnology 28: 2257–2265. DOI: 10.1007/s11274-012-1033-2

      21 21 Philippot, L., Raaijmakers, J.M., Lemanceau, P., and van der Putten, W.H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology 11: 789–799. DOI: 10.1038/nrmicro3109

      22 22 Chaparro, J.M., Badri, D.V., and Vivanco, J.M. (2014). Rhizosphere microbiome assemblage is affected by plant development. The ISME Journal 8: 790–803. DOI: 10.1038/ismej.2013.196

      23 23 Egamberdieva, D., Berg, G., Lindstrom, K., and Rasanen, L. (2010). Root colonizing Pseudomonas spp. improve growth and symbiosis performance of fodder Galega (Galega orientalis LAM) grown in potting soil. European Journal of Soil Biology 46: 269–272. DOI: 10.1016/j.ejsobi.2010.01.005

      24 24 Egamberdieva, D., Kucharova, Z., Davranov, K., Berg, G., Makarova, N., Azarova, T. et al. (2011). Bacteria able to control foot and root rot and to promote the growth of cucumber in salinated soils. Biology and Fertility of Soils 47: 197–205. DOI: 10.1007/s00374-010-0523-3

      25 25 Malfanova, N., Kamilova, F., Validov, S., Shcherbakov, A., Chebotar, V., Tikhonovich, I. et al. (2011). Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microbial Biotechnology 4: 523–532. DOI: 10.1111/j.1751-7915.2011.00253.x

      26 26 Sessitsch, A., Kuffner, M., Kidd, P., Vangronsveld, J., Wenzel, W., Fallmann, K. et al. (2013). The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology and Biochemistry 60: 182–194. DOI: 10.1016/j.soilbio.2013.01.012

      27 27 Berg, G., Grube, M., Schloter, M., and Smalla, K. (2014). Unraveling the plant microbiome: Looking back and future perspectives. Frontiers in Microbiology 5: 148. DOI: 10.3389/fmicb.2014.00148

      28 28 Köberl, M., Schmidt, R., Ramadan, E.M., Bauer, R., and Berg, G. (2014). The microbiome of medicinal plants: Diversity and importance for plant growth, quality and health. Frontiers in Microbiology 4: 400. DOI: 10.3389/fmicb.2013.00400

      29 29 Beneduzi, A., Ambrosini, A., and Passaglia, L.M.P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology 35: 1044–1051. DOI: 10.1590/S1415-47572012000600020

      30 30 Weller, D.M., Raaijmakers, J.M., McSpadden Gardner, B.B., and Thomashow, L.S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology 40: 308–348. DOI: 10.1146/annurev.Phyto.40.030402.110010

      31 31 Berendsen, R.L., Pieterse, C.M.J., and Bakker, P.A.H.M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science 17: 478–486. DOI: 10.1016/j.plants.2012.04.001

      32 32 Köberl, M., Ramadan, E.M., Adam, M., Cardinale, M., Hallmann, J., Heuer, H. et al. (2013). Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS microbiology letters 342: 168–178. DOI: 10.1111/1574-6968.12089

      33 Скачать книгу

Яндекс.Метрика