Эротические рассказы

Девочки лета. Нэнси ТайерЧитать онлайн книгу.

Девочки лета - Нэнси Тайер


Скачать книгу
на языке оригинала, является омонимом к слову «sail».

      6

      Героиня с картины американского художника и иллюстратора Нормана Роквелла, написанной в 1943 году американским художником и иллюстратором Норманом Роквеллом.

      7

      Цитата из драмы «Макбет» У. Шекспира.

      8

      Ретрофутуризм – направление моды 1960-х гг., когда исследования космоса вдохновили дизайнеров на причудливые и «внеземные» формы.

      9

      Небольшая кабинка в офисе открытого типа.

iVBORw0KGgoAAAANSUhEUgAAAPgAAAD4CAYAAADB0SsLAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAyRpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDcuMS1jMDAwIDc5LmRhYmFjYmIsIDIwMjEvMDQvMTQtMDA6Mzk6NDQgICAgICAgICI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VSZWYjIiB4bXA6Q3JlYXRvclRvb2w9IkFkb2JlIFBob3Rvc2hvcCAyMy4wIChXaW5kb3dzKSIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDpBQkFCNjhEOTEyNDkxMUVEQjVCQ0E5RkNERUQ1OTQ0MSIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDpBQkFCNjhEQTEyNDkxMUVEQjVCQ0E5RkNERUQ1OTQ0MSI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOkFCQUI2OEQ3MTI0OTExRURCNUJDQTlGQ0RFRDU5NDQxIiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOkFCQUI2OEQ4MTI0OTExRURCNUJDQTlGQ0RFRDU5NDQxIi8+IDwvcmRmOkRlc2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiA8P3hwYWNrZXQgZW5kPSJyIj8+0pO3FAAA6gZJREFUeNrs3XfMfXeR3/EH03s3dem9dwM2YDDdmGKCsBYkUBaUkI2UVRRp9w+SJYnQRtpIm1UU2GQ3LEu0CQpg2RAbY4wLYNNMN7333nvPeZ/c183wWzfsn38Fnitd3ee595zv+ZaZ+c535jMzl/vVr361s/s6aF/XWN632/x9483b6/ab3y/u62PL+/vj/4+P/9+zO9UH5+sKu1NwwL/utbxvNT69b7kf+vLe5f3t5f3m5f31DeO/Z/Pd7usAfF1udwc/oITtERtG9r7nQdL37wxmn+/d14HE4Oedd97ujOyj193udrcbLB9Hbt5HXBJm/uUvf7nzwx/+cOfyl7/8zi9+8Yudn//85+v3relPf/rT9berXe1q63c//vGPd37yk5/sXOMa19j50Y9+tHPNa15zvb/Xt7/97Z3rXve6O4cccsjOFa5whfWzNnv3uupVr3pJhph6f9byPnez45+50NfPd1d+n9DWLoPvZ4Z+WF9dnPtizJ/97GcrU/YZI/f+8Ic/vHOzm91sZeof/OAHKzNe+9rXXj/77rOf/ezODW94w51vfetb6/fd873vfW9l+Ctd6Uo73/3ud3fe//7379z5zndemfpLX/rS+nfM3G8JiC984Qs7d7jDHXa++tWv7tziFrfY+f73v7/+FgElBK5+9auvb4LgYrxi9BM3zH7uLlVc9gy+ewa/bCc6A9iTl/eTNrv0hb5i1Bj5O9/5zvp/DNlO23cxbYz6yU9+cufKV77yzs1vfvOVCbu2a77+9a/vXOUqV9kyZjty/8eYXdPfMXfXxcQx5u/93u+tQuP617/++lvXfO1rX1sZtjZ63uUud7mVsevD5z73ubVP17nOddbv+u1GN7rRKjy0X9s+z+d1hHlY5ub7G2Y/YcPwX9+lmF0V/WBi6mdd2C4dU8TQMRT1Ocb92Mc+tnOta11rVa/7rt01Joqp+v3FL37xzrHHHrvdabu2NYwBU7kPPfTQtd126a985Ssrk37qU59ad+d+jzGp9t/4xjdWBr/BDW6w3heT9qoPPTtGT3gkLGqfev/lL3957Uv31f+u6XkxfJpFwieBlIbR8xMg3XsRr5M2zH7CLrPvqugHJVN31u0dU7XTxlDtpDFqO2aMGDPEUDFhv8dkMU+vmOqLX/zizvWud731t5iotmLUBEDvb37zm+u93ZN6nup997vffd1VP/ShD633dk3PSc3ue+0QFle84hXXPtXXGNS5PgZO4Jx77rkr8yYE0gLq11lnnbVqC93b2OpLAqCjQs9JCMTkHRv67SLO9TH7Sxd6fOUude0y+P6cyOdsGPvoC9qlY6Z2vU9/+tNbZk1NvuMd77heE1OlQn/84x9f/48RYiqq8Cc+8YmdG9/4xivjdF27eZ8xaozc+sXgqc93utOdtufxmDHmxkz1IUaMcRMq9SOm7v4YtetvetOb7rzzne9c/7/nPe+5thvz3+52t1vH0f31KyGTEIqRu793fUlY1DdGOseDhEnj6Jk3uclNdj7/+c+v47zNbW6zjr8+XoihLjX+xQttnr1Lcbtn8H0xeXddPp632a2vcX5MHVGnHttZU4sj6FTxCDyC7++ubZeMafq+7yL4mDCGaQdup2xnv8997rMyYddgGga3mKlnvOc971l3yQxjduZ23BiwNnoG1bq+9VsqdgzZNbXRZ8+ozQRBgql3/UyNJ7Dq561udatVsNTf2972tluNoPvt+gmktJN27p7b/R0PauvVr371zmGHHbaO85a3vOV6TYJrvJrfZ/Re5r3d5y83O/uuNX73DL7XGfvoDWOf724dkcYEnU9jnJgxQm437vt2r+Y6ho95Y4J+47pi5c5iHVNjZmfmdsN2zlvf+tar2ltb3df1MWMM02e7Y/e3e8d4fR9j93c7dtdkqIuhYvKuT+LHmJ290yzsxPr4rne9az0SJKR6JTj6uz7WZp89J6HWzt5cxOz91ni57bqvv+sLZm/8XZeGkkBprI0x4XEhavwLN4z+8V3K3FXR94Ya/i/O72zdThaTRLAReXMZM7cLpSpHoDFJDBMR99k9XR/D9E4IxAwRe58ReDtZxB5DxADtstxbBEW7akzf/XbiVHltxvwJhNpJcMQwCYYYN1Wcdbw+stb33ATAZz7zmfU5fVe7tcfyvurNy32Nq7F0Bu//xktNZwNIaDU/MSyjYc8lGNJCel79jMH7nR2A0EoDSBhcgCvu73fV910GvzSM/afL++bnt1u3C9q17FTtpn3XbtV37ZxU0uaZat5vGDUmjum6pjZisv5PE+j/mComaSeNCVKxuzYhERP3f9/HAFxlWbLboWO2+tR1MU7Cp78Jotqs7Rg+Jq3dPrsm5o7RG4/x1XdjdPbuf7aDrktIJQxY6BMsfSb0aB49u2f2XW02lu7r75jfMaejhmND44nZL8AaH+H+yUK/J+1S7i6DXyLGjugiZozX7uXsGBPHWHzS/R6Bd0//N8ddC3HWdRFyzJkwiCFi/og5ho+p2xFjOG6sVOl2wu5tx405a7s22zGpuz17qvftsDFQzN6uH6P3PIyaca/ntfvXH31gI0h4tIun9jf27nG+7/mEWZ/9byfv3b2MeIRb/W0MCbgPfvCDW4t9Z3Eqfs+tL53de27X117zkADsmv7eZfSLZvDLv+AFL9j+Qxr/rjL2QrxZbJ+Zcdv3EW87z1ve8paVSWOemKgdp797RaD9liGrnSni77cYIbRYf7NaY2Agkq7hWuqzNaAOc1lF+O1czrv9HpHHOBG/M/zZZ5+9c9e73nVtq9/qTwwdY/ecds7+d+6PiWLINI0EVqp+DNhzE1h95lrrXF5/e+4HPvCB9dnGmECof7UL5tqLWp36nbBjWGMkrA+10fj43/u7MfaOoXsO1bz2E2KNzTN7Xvd65vI6dHn//vKcf7S837/M5Wd/F2m5ed5l8P/P2E9YJuQN58fY7VxvfvObVyJDbO0gEXqEFrGzFEdkEWjM0k4Xgb7jHe9Y1dDui8Bj2og04u/amCsGSGDM3S/Ged3rXrcyZb91f+20c/fu3oROQqO/U80j+nbJ+gag0nPqX58JoMbQM+pH4+ieGDdmaaesbz0vyzgNJNdb/bHzRjx82/WlNtJi6kN97LN+1GbM1y6cMOm7GLL+1e/mAyCm4059TMj0W9d1T3Pcc+tXfan/Cana6BiSS6/+NqbGuwej/+Olr7df3l9Z6Ppzuwz+O8bgC2MfsUxEqtwfTcaOqCLwCDUijwhj9l4xRkQVIUWIERuVXNBH3/UZc8YYEX0+4HZBu14EGREnCN73vvetTASK2nP7u+/sTs63ffacmDV1PQarv92X5hCzxwgJphYZOo4RLEFEY8B4Xd+17dQxUszT9d2bqlcfu6bP7ufSY3BrfngJ6ldt1n7vGLbrzjnnnHVOHGPqXwzNml97zUd9baf+yEc+so6172q3e2qrftS/hBYbR0eMrvPZ8wej32PD6Fdc3h9Z6Pt7uwz+28/YN1smoDP2X28k/XbHTqVtd+Lq6u3s7SzbZwwYM9gJI+yIrr8j7AisN7RZgA4RXBifJfke97jHdnddjSLL990Drgqd5nm1GaNpI0ZJ7WXtbidu92Q3YNSLEWPa+pW/PObtOQmUXp3BqckxbL8nFBxLajfB1xh7FiamKvd97cVguduMs2vqV2i6np8w6vp24PrOw9B9bAV5B+DbRbg1d7XFtejI0TP7OwHScaj+NGei6Davhy7vZy3r/vllLd//u8Tgv1NGtoVoU8NfvDMAKhFSRBHRtltEMO1SEVUqdgR1+OGHr9+lPjNsZfSK0SKyCDMmTmWPOCNKoZsxaj5pKm5MGmH33NpjnOoafmcGKW6l+gI8Iiy0nSyCj/GdmdvFwpwDs6T+J1j6285fn33XuAma+ox5moc+e5ZzP6t933Wm75raqK8Jgizu7agxVtey7Hdv1/RMZ/b61/PShu5yl7tsjYbO4KzszUljTwPq9+aq64F0aq/d/v73v//6W98xHqahPP7xj9/67vcwxD1vofU371rRf4vU8Q1j/5ovu90rNFVMEbELyIhR7GgRZ8zR9zErNThm6dXO1v8RYUzGOt49wjJjxu7tGTFFBM1SnmBJ3caoXYcZYNXb7bomhq2PtUl1jRn6/eEPf/g2aqy+9Tt1vB21Pvqu34FK+r3PxsudVb96A9kApUw4KmNhgodQi8ljzNpheOy3adxrLmhAjHy1m+BJc+JHb6xdn9GwvjcftdE1rPMi1xIUAm9698zmpDF1NAplB88/Xv96ef/FQvM/2LWiH9yD/efLxyumOh4DxcR2BrHULMm92wEilHYGriVosxg1AquNdojmLRW1/8Vj92LJFhUGP96ba4lFvleME8ECxFCZYxRhoPzPPac2e1Y7WH3rHN3/LTAgSm2nibT79nzPqg+0iq5LIMWcjaH+xtQiyhJCzU/fCTeNYfqMMdkNmpeEAo+Anbw56vfasePH9GlBXG4MbGwU7cJsDv0mZLZ3jNvOXXvcjD0nRk5o1Fda00c/+tGtTWGOf3k9Ynk/fXnOJ5b1+9juGfzgNaI9e6rjLXyEGKOm6nX27W+WbrDKzqws55glQmmHjCkxDPhnxNzu2m8RGwtzu1xqJWMZVddOKqorIdLz2tkiYDs0fDdizwbQb62VXTRmrd3u739uKEeEvreT9neMzAreubpdru/a9bqv/tZmDNjRozah6ZyHGyeAzjSoNcddY64yokHvpdrDs8eUgWCai+ahsXRNY+/3rk1o9mr+hZ4Kpume7Bf1ASagMdntQYUlxej/dnp+/M3rehu32i+W9zuXOf3ZLoMfpLt2xJMKmeoXUUV88M/tQkIfGXaotAioXardIeKK+BIEoqaorhFSTARW+u53v3slwrDc3Dk9M4JN1US0/N+s0Z3lqeqAJD0nZukV4/XiMpMggtU8ZmyM3GgJMv2Kgbqvvtdeqn/3xegJG2OIgWLu5qE5qp3G7SycBZyg6ve+ax4aZ/MZw8XEaR3guoA+jTttoP61HmLeG0eCqHUQGNM9zU39rp/9nWDNoFZfEhJQgd3fM/nRwW3bxZvPnpVFvz4SrL+Nu/lvLYMX6bUM7n8tf/7h3LUj2BNOOGFrSRZwETFhChbZCKT/2z3aSfq0a/QZEQFfRNhdy087DWARv51eOCXLMEt7O0z9aN4jxogQ+o1xqLa6LkJOfa6diP+9733v+lvgliLNapMvud97ZtpKO3P9ZZiCugNKSXB1VDE3t7/97bc+eq4p6nbCIAt8Y8ZANIbGCrAiZVSMzb/fdf0do9JM7Pb9Zowxbsea7ulZ9T/hAFsg9NUxJ2GVjaE+8Vr0JrR70YwSWlCBb3/729cw2BHQYjf/xrIeb99l8AMQsLLz/5L83dZ3EU3EEiG0yKnm0FSs02KkIySxzlBnEUht2NWdHbs2YmHlro2Yql2se6exyNmxz77rPMz4Zc5jrtpnnKuP9a2/I8iERH3rM2ao/e6JqdqFY5iEQ8+uD/WRVbmxRsQANFBzwUSBc2SX6bn1s3H1DCGs3IAJlQRe3+e/b4fvGTLEmN/+rw/wAr1FmbE99JyubXftPn10nm6cADSQd/W5e3qW+HXXS1jhHJ8wrO89t/+zT2Swaz4bK/djbe2xmz9+ecZDNir713YZ/MBg7udv/NrbVUrljJkQX4vc7hARxEi9gClEYLXLpR5GgBGB3T3CjCBSfdtlZGPh23YWjVglL3C+j5kFdESM7ZARVoToHEx97fp2lwRC/0sG0Xm2/7u+Z8RgjHn83KzRrSEjXO3NCLSYprZ6XmPrf4yW2kvNjrnBZJ1nYdNjkJ5b27Do7Au1Wz+6tmswdq+0CX77hGhjaBdNXU9YdS1BZk6crWsPrgBSjzGt3ZuWU1+4OOtHa5VdofsZ7frekafxNR+y5KCL5XWb5f1PlnvetcznR3cZfP+r5H8wASudeZP2LRoceFI65o0BIwQvFl5ul/6WAIGFOULpe4EYdnSZV4Q9NrExDTRVzEL9JywixF4RcEQfgRMWCZKYvz5FdAmUhEO7Zm2mjrMEY8aEAFRZBNuuJ1S1Z8Gq00S6R5+Fu8YQ9af+NVcxRQbD6IEVXDhpbXP3McQB9tSn1Gp+foKq5zX3jbdntEYxnZ2z62qHG02m1uatdaitrktICjJpPK1zmWcIIskma098vjabAzDhLPCMp9ll6nfz3TPq0+Z1CAPcMg9v3GXwfc/cR++pkkfMnSedazvvOY+20KltrMotptRHCYOIp92gs1uM3IsvXIojfukII+KJYLUV4bLgQnFF2BFdO1TP6rjQDh7xRfB2vfrWzpw6Cpce00W4BEB9ijjtdtxU8p/L00Y7iHk7BzfeiLv7QU7BSZub+tH99b95ajwxMgisXZ4AEfFV2/3meHHmmWeu39f/GFi2VfMGZJNQkGlGlFjPzpLfUQnuoN+bf353qZ97N5bWq3XAtBPbUJ8aV2O/733vu9XMWovabDzCd9GGJByOJiP+/BELw9w9j8zBYmU/6Bl8g0h75VTJW9gYDoIqAmih5B0TlBFRWlDukv7O4t3/EX9vYA87AuKSMKG3RIIxQwQcIfV//eiZ7UoZcpwjM+pFxIxPXduzew6BIiorRqE1dI3zNM2AsYmVHXhGAgkWdmp0AocAwfBd27MbV8Re304//fTVnwzFVr8RTM9NkCQoxb0763OhRUMxo6AR6yFPO8y+uHFaRUeq5q3+1pfmsjbqJ7tG7db/tIQEeXPc9QkItokMjnZmbruuE9XXOjWG5hoUuD72fOtB0DMaLq+7bKzs7zoYItQOagZfmPs/Lh9/Pq3k7djw13KaObtJH9yiyhfGwBXBR3SMZNxeVNiYG5FHXN0rAQO/bcYb0WG10b1Uy4RA94o4s/PURznNnU/bdRAqou45jhAs331GyM6jtZ3K2fhqpzHIzCJBRKo+zDYDlkCOfovonU9Z3htb1ySkEiSODm9961vXY0CaBeHQ/LYDd33jqN/U776r/dqkidRnWWcg/JpbySuav9ptHDF
Скачать книгу
Яндекс.Метрика