Эротические рассказы

Отряд отморозков. Миссия «Алсос» или кто помешал нацистам создать атомную бомбу. Сэм КинЧитать онлайн книгу.

Отряд отморозков. Миссия «Алсос» или кто помешал нацистам создать атомную бомбу - Сэм Кин


Скачать книгу
Выражается десятичной дробью с тремя знаками после запятой. Чем выше этот показатель у бэттера, тем лучше. – Прим. ред.

      3

      Иннинг – период в бейсбольном матче, который, как правило, состоит из девяти иннингов. – Прим. пер.

      4

      Питчер (игрок, подающий мяч) и кетчер (игрок, принимающий мяч в ловушку) стараются обмануть находящегося между ними бэттера, который пытается отбить мяч битой. – Прим. пер.

iVBORw0KGgoAAAANSUhEUgAAAi0AAANICAYAAAALp98vAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAZdEVYdFNvZnR3YXJlAEFkb2JlIEltYWdlUmVhZHlxyWU8AAD6wklEQVR4XuydB1hVV9aGr0bT2ySZ9J6Z9GRmMmkzySSTTCZt0mPvvfcaewfsqCBVREBQmqB06U0ExV5BrIhKF1Gx8X+L3MN/uKzb4KKUled5H8M+e6+9zy5rffu0q6msrBQEQRAEQWj0sImCIAiCIAiNDTZREARBEAShscEmCoIgCIIgNDbYREEQBEEQhMYGmygIgiAIgtDYYBMFQRAEQRAaG2yiIAiCIAhCY4NNFARBEARBaGywiYIgCIIgCI0NNlEQBEEQBKGxwSYKgiAIgiA0NthEQRAEQRCExgabKAiCIAiC0NhgEwVBEARBEBobbKIgCIIgCEJjg00UBEEQBEFobLCJgiAIgiAIjQ02URAEQRAEobHBJgqCIAiCIDQ22ERBEARBEITGBpsoCIIgCILQ2GATBUEQBEEQGhtsoiAIgiAIQmODTRQEQRAEQWhssImCIAiCIAiNDTZREARBEAShscEmCkJzo7y8XJOQkHBbcnLya6ADGA+swEJgrf27Y3x8/OsHDhxoxdkQBEEQbi1soiA0B27cuFH1L8TKY+7u7uNtbGxS5s+ffxpcAZUMV6ytrfPs7OxS/f39JwYGBj5+5cqVajt1ITo62s7b2zvZ19c3+iaShjoHlpaWsm3aunWrZs2aNWOQLwXEqsrVhRgQDvzBcjB83bp1/9i0adNd1G/16bu6cu3atap/09LSHvPy8vof2jQJOIENYDPgzsMcYn18fNLBRIjh23TrN4Xg4OAH165d6wxbWwD1IVePJaHzTvD09IyLjY39nGuTIDQF2ERBaOqUlJRo9uzZ8+iyZcumL126tHDx4sWVy5cvNwlbW9tKyg8KUXbW5s2bH+HqMAUEpq0QS4q9mwbqXFJYWMi2iYI6Athjc+fOjV6yZAlbvp5cg90z6DunlJSUTzEWbW+GeLlw4YLm9OnTj7m6unZfuXJlJMbxwqJFi24w7asXJHAXLFiQkp2d/QLXDlMoKCjQrFix4lOI5NMNNAY1oDqsrKwqV69ebXPx4sW2XJsEoSnAJgpCUwaBS2NnZ/f1woULd0K0sMLEVKg8AtTeqKiobw4fPszWZ4j169dvpaDB2W5IUOeioqIitk0ECZcNGzY8iHNbj+DJ2qgv1HcIllchXoK2bt36TxoXri31hc5l3759dwcGBg5DYD5A9dZ33PVBghZsPHLkyKNcW8yBhIuTk9OHGKtsri5LQeOLtXAFAnosBAvbFkFoKrCJgtBUOXv2LAmWYQgElzkHXhfI6SO4l2KHPWbXrl1svfporKKFuHr1Kt2meGXRokUnORuWBGKizNHRcUxhYWFrri31IS4u7kXYD8c532goAabiek5OznNcO+oCCRcXF5d5JIaYuiwCzT9vb+8oeq6La4MgNCXYREFoipBgQdAaT5fCGyJ4UWCBeJm6e/dutn6OxixaiKSkpD9CjB3mbFgSGg/qh5UrVy6GcLHYg84QLH+xsbE51FBXVnTBeVy7fPnyA1xb6oqHh8ecpUuXsvVZgoULF1Zu2rRpI1e3IDQ12ERBaGpobwn1aUjnTyA4Xodw6a/veRFdmoBoeRyipUFvT6ghQeng4DD93LlzbHvMAYLlebR9H1dPQ9FAosVORIsgmAabKAhNjYCAgPcgJoo4p22Iujz/gABTFBMT8wHXDl1EtNQGbbsE4fJzfn4+2yZTiI2NvRPt3tAQV9QM0UCixUNEiyCYBpsoCE2JgwcPtrW1tY00VXzQbn/RokXlCEBZTk5OKStXrjxAfyOY3jDVho2NTQICp9HXXUm0UH1o31XYP6+HUtRbwdWjC4IbtbNUp7zCRSUf/t+iogXtr4BNffVSm65x5ThIaFhZWWVs3769Tg+z0oO3GLO+5jwHQqIAbbyibSt3DueRz+hzUA0kWgINiRac50WuvQTKlSGPwb4X0SI0J9hEQWhKbN68uRsCL+uw1VCwhAM/7ePjMwu8ALFDz1a0ols9EBdPBwYGToHAOG6KcEHAqPT09ByEAMa2SQF2t9ErzxBHvwUFBd0VEBDwAHhQzYYNG27DcTtj9SJ4XfDy8vov8rfRtQHuA2+gXdsoL/61mGghcbB69eoFqJeuaKnrpHP5A3jJ39+/3YIFC/xQbyn1M2dHFwTcAaa0UZfQ0NC7ITIPcTZ1oT6FQDru6uq6BP3/Odr6tLbtNc4D7b8b7R7L2VDTQKJlsz7RQmPu4uLyLfqe5k6NdiPtXszBx5AnliurIKJFaE6wiYLQVMjNzb3X2to6zFigpOMIqnshTN6mt2Y4W0RqauqbyJdsSuBFMExD/rs4Owre3t7bIYQcTp06xR5XQABajEDM1qMAcVGWnZ39D668QmJi4oto/2HUaW8p0UKCcMuWLbO58gr0HZbMzEwNgv9PqP+0Kf0HgZMIwfggZ88QCMC9EYivczbVkGBBQA9Cn7yMecLaUqCPCNrb2w/m7KhpINGSpk+04DxLINLe4coREN53YHwiubIKIlqE5gSbKAhNgevXr1OQ/JCuBHDOWg0EwRljgkUBQuRPyH+As6MGwaIiPT39Z86Ggq+v77Bjx44ZDcyWEi0EhMjfIOS6QLQY/YiYpUSLAl15Wr9+/bcQJNW3qvRB4xYcHPweZ0cfOTk59MB1sCljDiEQiaB+P2dHF61oGcLZUdNAouWAAdFSBNHyKleO0IqWKK6sgogWoTnBJgpCU4ACDXbT0zhHrYaeKXF1dR3J2dBHdHT0gAULFrD2FLQ7+SV5eXmsDaKiosKkT9lbUrTQMx8XL15sjXqNvlpsadFCUP0ODg72xoQF9R+EwgRzvpabkZHxgpWV1UHOngJd5UGewszMzA85Gxy3SrTEx8drMO56+x+CIx+i5SmuLCGiRWhpsImC0BS4evXqbStXroyl4Mc5awUEz1PJyclm3YbYvHnzXdbW1kZfp4WwiT158qTZtzh0saRoMYeGEC1EXFzcm+j3G5w9BRo3Z2dns4IphMi3aM8lzp4CXbVYtWqVtzmvVd8q0RIZGXkn5tBRri4CguMMRIve+kS0CC0NNlEQmgIIpHcjMBZzjloNAo3LpUuXzPqgGX2p1NXV1UXfZXsFBIRT+O9lzoY5NDfRUlZWdi/GJomzp0CiBRzbtm0ba0MX+m0hLy+vwcbGBCLgenR0dD/Ohj5ulWiJiop6GO3V+0ViHMvduHGj3rfURLQILQ02URCaAp6eni8tXrzY6KvCCDQDIVpYG4bw8fHpQ7eWOJsKFBAgWt7nyptDMxQtGoiWRZw9Nei/4vXr15t0pYo+IGhtbT0D48naUkCgPwfR8jZnQx+3ULS8gPbmcXWh/ypdXFyOGfq9IBEtQkuDTRSEpgCC3bsQLVc5R60GYuDHuvxQHETLNxAtBm9xaEXLv7jy5tBMRctQzp4anHMZzv3PnA1dzpw5Q89/LOPsqIEIOArRch9nQx+3ULS8gfbmc3WRaHFzc9vLlVMQ0SK0NNhEQWgKQLT8E6LF4Ie16EpJTEzMf7nyxoBo+QTlDb5aqxUtn3LlzaG5iZbS0lIN+qabsasiOOdynPtfOBu6aEWLE2dHDf0WUXh4OGtDH7dQtLwP0cJ+yVkrWlK4cgoiWoSWBpsoCE0BU0QLOewTJ078hytvDIiWf4loqZtoIdLT09tR/3A2FbSi5a9ceV1MES30vAsC/X660sPZ0MctFC2fQbTQ13hr1aUVLRFcOQURLUJLg00UhKaAiJb605CiBW39lcpyNhUsLVroypqnp+d+rrwhbqFo+R6ihf2mjVa0+HPlFES0CC0NNlEQmgIiWuqPiJbfuYWipTNEyxWuLq1oWc2VUxDRIrQ02ERBaAqIaKk/Ilp+5xaKln4QLewc04qWZVw5BREtQkuDTRSEpoCIlvojouV3bqFoGQnRwtalFS1zuXIKIlqElgabKAhNAREt9UdEy+/cQtEy2Yho+Y0rpyCiRWhpsImC0BQQ0VJ/RLT8zi0ULdZGRMswrpyCiBahpcEmCkJTQERL/RHR8ju3ULQsNyJaunPlFES0CC0NNlEQmgIiWuqPiJbfuRWihX4NG+fuqm/ctaLlJ66sgogWoaXBJgpCU0BES/0R0fI7t0K07N69W2NlZbUWNtm6tKLlC66sgogWoaXBJgpCU0BES/0R0fI7t0K07Nu3T4P+CeDqIbSixeCPcYpoEVoabKIgNAVEtNQfES2/cwtFSyhXD0GixdHR8VWurIKIFqGlwSYKQlNAREv9EdHyO7dItNyO/onm6iFItMTExDzDlVUQ0SK0NNhEQWgKiGipPyJafucWiZb70T9JXD3E0qVLK86fP/8kV1ZBRIvQ0mATBaEpIKKl/oho+Z1bJFoeQ/9s4+ohIFoKIVoe48oqiGgRWhpsoiA0BUS01B8RLb9zi0TLc+ifvVw9BETLCYiWR7iyCiJahJYGmygITQERLfVHRMvv3CLR8gr6J4urh4Bo2QfR8geurIKIFqGlwSYKQlNAREv9EdHyO7dItLyN/jnB1UNAtGyFaLmfK6sgokVoabCJgtAUENFSf5qbaCGQ51BCQgJrQx+3SLS8j/45x9VDQLTEQrTcw5VVENEitDTYREFoCohoqT9NULQs4eyoWbBgwYnNmzcbfIBVl1skWj6lMeXqISBaNkK03MmVVRDRIrQ02ERBaAqIaKk/TUm05OXlaSBIpnB21CDPhejo6G85G/q4RaLlS/TPFa4eAqLFG6KlLVdWQUSL0NJgEwWhKSCipf40JdFCpKam9tL3q8gKy5Ytow+z2R45coS1wXGLRMsPhvoHosUJoqU1V1ZBRIvQ0mATBaEpIKKl/jQ10ZKZmfkRbOZzttRA2ByNj49/g7PBcYtESwdD/QPRshSihS2rIKJFaGmwiYLQFBDRUn+ammjJyMi408rKKoWzpQbigoTL6ri4uNs4O7rcItHS01D/QLPMEdEiCDVhEwWhKSCipf40NdFy7do1GhcrY32lYGNjMyM+Pp61peZmi5aysjLNqlWrBtLvC3H1EBAtE0W0CEJN2ERBaAqIaKk/TU20EMnJyX9CQC/m7OlCz7egDY6JiYlPFRcXa27cuMHa1IqWvpwNNZYSLYWFhfRQ8RiuDgWc4xARLYJQEzZREJoCIlrqT1MULYSDg8MCQ1cpdME45mCuzM3IyPhpx44dH2VmZn4APiTw94dI/zsEyUKurBpLiZaioiIN2jONq4NAPXR7q2dpaSlbXkFEi9DSYBMFoSkgoqX+NFXRcuDAgUcx9rs5m4ZAe66BAnBWFxzX+80UBQuLlvlcHQTNheTk5PZcWTUiWoSWBpsoCE0BES31pyFFy+7du3+l/uFsKtRVtFy4cIFu53yG8S+mqxKc7YbAwqLFjquDoD7Pysr6gSurRkSL0NJgEwWhKSCipf40lGihZzEwNl05e2rqKlqI/Px8zcqVK7uinsuc7YbAgqLlNrTbjauD0IqWL7myakS0CC0NNlEQmgIiWupPQ4kWejvG1tZ2EGdPDc65DOf+KmfDFOjT/hAuP2Ic9P7woCWxoGi5HXN3PVcHgT6/AtFidF6JaBFaGmyiIDQFRLTUnwYWLVacPTXovxI/P79HOBumQreKELxfxlzYQOPB1WMpLCha7kF7Q7k6CPR5KUTLh1xZNSJahJYGmygITQERLfWnAUXLXRAtEZw9NUuXLs1FG1gb5rJ///5W3t7e32FOUL3HgcVvG1lQtDyAdiZwdRDo87MQLX/jyqoR0SK0NNhEQWgKiGipPw0lWtLT01+EaLnE2VOgb6g4OztHceXrw9atWzUQQ7+iDpO+5WIOFhQtD2HuZnB1EOjzYxAtr3Nl1YhoEVoabKIgNAVEtNSfhhItjo6Os419R4VEi4ODwyyufH0IDw9/FqJlC1enGqof+ehXlun8M8Ep5Zg+LCha6JXt/VwdBPr8AETLi1xZNSJahJYGmygITQERLfXH0qKFvjgbEhLyPvqtlLOlhkTNunXrPuHs1JXS0tLWEBYRJEi4OtXgvPzj4uJeQ5vvOn/+fBt7e/tRXD41FhQtT2Lu0i0sth60bQdEy9NcWTUiWoSWBpsoCE0BES31x5KihX4XCILlb8h/gLOjC8ZuV2Fh4R85W3XF39+/M8bE4JyA8KBzWhcTE9NWKaf9jP9gLr8aC4qW53D+hVwdBNqXBtHyKFdWjYgWoaXBJgpCU0BES/2pr2ihb6WEhobeHR0d/X5QUJD1ggULTpIo4Ozogr4bT7/Bw9mtC8eOHaPP+wcZuy2Ffj4XFxf3jrrszf7BRIiWFzF39T4ojD6PhWi5jyurRkSL0NJgEwWhKSCipf6YIlq0D8wWenp6HvDw8DisgL8Pu7i4ZNnY2ByHWCk21n411tbW+9PS0l7g2lRXUlJSHrGystrD1adA54IxXXf06NEaZW+2aMnLy3sZ7WDrIDAmoRAtt3Nl1YhoEVoabKIgNAVEtNQfU0QLoX1otRbGrmpwUJ/CXj/0G9umupKenv5PnEs+V6cCjlfGx8dP1y17s0WLk5PTm4b6Du0MgGhhy6oR0SK0NNhEQWgKiGipP6aKFktBgRqCxen48eNse+oDREt3EiVcvQo4fhmipZ1u2ZstWpydnT8yIlrWimgRhNqwiYLQFBDRUn9upmjRChb/kydP3s21pT4UFBTQ1YsZxq784FzzIFre1C1/C0TLV4baam1t7Xr48GG2rBoRLUJLg00UhKaAiJb6c7NEC8aJBMuK3NxciwsWAmOssbGxcefqVkPP0mzevLn6rSGFWyBa2ukTLZRuZ2e3wpTbZyJahJYGmygITQERLfXnZogW2M+EYOlIwoJrgyXAGDyCsUjh6lcgMbBy5cqInJycWuVvgWjppU+0oL/ouZsFXDldRLQILQ02URCaAiJa6k99H8Q1wFUE5UicU69t27b9MS8vj63fUmAMXsNYnOParoCxrMSYWnPlb4FoGWFEtMzgyukiokVoabCJgtAUENFSf0wRLSRYHB0dS9zd3XNWr159XIcTIBvsACFg6apVqzpjbF4sLy+/4/z585rr16+zdVsKEhyurq6fUju59itoRUtHfTZusmiZYkS0jOfK6SKiRWhpsImC0BQQ0VJ/TBEtFETN/e2hmwlEhAbtHKDbbl0wV65CeL3C2bgFosXGiGgZzJXTRUSL0NJgEwWhKSCipf40B9FSUVGhsbOzs+farkPegQMH2AeBb4FosTcgWq5DtPTkyukiokVoabCJgtAUENFSf5qJaLkDoiWJa7saiJIIiJM2nI1bIFo8DIgW+pZMe66cLiJahJYGmygITQERLfWnOYiW06dP3492Fum2WxeIkgUkTjgbt0C06P2NJPT3BYiWb7lyuohoEVoabKIgNAVEtNSf5iBa3N3d/4pxusG1Xc3SpUu70K0kzsYtEC0xBkRLMUSLSXNKRIvQ0mATBaEpIKKl/jQH0bJ27dreGCe27QqYJ5U7dux4nytP3ALRstWAaDkH0fIuV04XES1CS4NNFISmgIiW+tNMRIutMdGCcTp2+vTpF7nyxC0QLfsMiJbTEC2vc+V0EdEitDTYREFoCohoqT9NXbTk5+drXFxcYumDdlzbFTBOUfTsC2eDuAWiJdeAaDkB0fI8V04XES1CS4NNFISmgIiW+tPURUtkZORd1tbWh7l2q7GxsbHDOLE2iJspWjIzM9ssW7asUN/H8NDfRyBaHuHK6iKiRWhpsImC0BQQ0VJ/mrpoiY2NfWfBggUGP9+P45WJiYmjufIKN1O0+Pr6PoB5U8zZJ9DfByFa7uLK6iKiRWhpsImC0BQQ0VJ/moFo6QxRcoVrtwLaX7Ft27afuPIKN1O0YKyfwliXcvYJa2vrPZs3b2bL6iKiRWhpsImC0BQQ0VJ/mrJoKSkp0Xh6es7GGLHtVkD7T0C0vMXZULjJouU1jHUZZ5+ec3Fyctph6FaWGhEtQkuDTRSEpoCIlvrTlEXL/v37NfPmzfOCkGDbrWBtbZ2O/9jP9yvcZNHyPsb6ImefBBjmXSpXjkNEi9DSYBMFoSlwE0TLxyJaGq9oOXTo0ANoWwLXZgV62NXW1jb4wIEDrA2FmyxaPsNYX+bsa0VLOFeOQ0SL0NJgEwWhKWCKaKEgkJCQ8CVX3hgIHp+ivMEvrYpouXVAtLyOth3l2qxAfRocHDyPK6/mJouWH9Au9jkcrWjx5cpxiGgRWhpsoiA0BSBa3oFouco5ajUIED9fvHiRtWEIBI//URDhbCpoRcvHXHlzENFiPhAt/6W2cW1WQJ9ehWjpyJVXc5NFSy+0i72CpxUtzlw5DhEtQkuDTRSEpoCXl9dzEC0VnKNWg0Az4tKlS6wNQyB4DDFBtFyDaD
Скачать книгу
Яндекс.Метрика