Эротические рассказы

Депортация. Олег АйрашинЧитать онлайн книгу.

Депортация - Олег Айрашин


Скачать книгу
БХИ (в просторечии – биохрон) – коэффициент, отражающий темпы старения организма. При естественном старении и отсутствии факторов риска биохрон равен единице. При БХИ, равном двум, старение замедляется в два раза, при десяти – соответственно в десять. Факторы риска (стрессы, вредные привычки и другие) приводят к агрессивному старению. При этом биохрон может оказаться и меньше единицы. Ожидаемая продолжительность жизни связана с БХИ сложной формулой. Имеет значение не только доза эликсира бессмертия, но и возраст начала приёма препарата, факторы риска или, наоборот, плюсующие факторы.

      9

      Артур Конан Дойл. Второе пятно

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAhhBdwDASIAAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEFAgMEBgf/xAAaAQEAAwEBAQAAAAAAAAAAAAAAAQIDBAUG/9oADAMBAAIQAxAAAAGhHD9kAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAAAAAAAAJVgIBIAJTAmAAABIAAAAAAAAAAAAAAIABIAAAAAAAAACYEoAAAAAAAAACYEwACYEoEwAAEoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwAAAAACYAACYEoAAAAAIABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIABIAAAAAAAAAAAAAAAAAAAAAAIABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAABIAAAAAAAAAAAAAAAAAAAAAAIEkABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAJIhMJAAAABIAAAAAAAAAAAAAAAAAAIAABIAAAAAABIhIhIhIhIhIhIhMAAAAAAAAkhIhIhIhIhIiQAAAAAAAAAAARIhIgAAAAAAAAAAAAAAAAAAACYITBE4xlp5/Z07bDfxqDj+hcdejxcd9fh62USr2QmAAEgAAAAAAAAAAAAAAAAAAgAAEgAAAJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEiEwAAAAAAAAAAAAAAAAAgAAWGvmd/br6OjwssejpmKTpu9pspOfKJ8vy++89l30U4zz+4TDUEgAAAAAAAAAAAAAAAAAAgAAEgAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEiAAAAAAAAAAAAAAAAAiUBjlY6efU3F939Hh+Z6PUeLtl6bp8tZnoOnVuNVNZcB5vv3eehp0Z6+f35iYy9IEgAAAAAAAAAAAAAAAAAAgAAEgJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEwAAAAAAAAAAAAAAgAAFXqKj0HX8x02XN235/P6663NnRjannen0NWOGnk6+Dp44UW05voYGfoAkAAAAAAAAAAAAAAAAAAEAAkBMSAAAAAAAAAAAAAAAAAAgvItz0j1nmU6RXoAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAIAEjHLv18y4suax6PB6aW/8XKw6cOo6rLR0Grj6K05PLWuo5XRTV0x2HJ9OiYjYEgAAAAAAAAAAAAAAAAAAiYCYEgSAAAAB1830nTh83y+m7dfM+YR6PznP7YtluTo975PXzPN93D9Gp1eKfQsdfO+a7bW8p2eTfQ8L8fzfm9V5XH1gr0O3m+l6cHmOL0/fr5vy/K+rMPY2dHuflt+Swwx9LGvlLun+mzj8rx+h+Dr06Dqr1b7f1Vbv4Xl6f6l4WnXWdXR7RPzSwr/AKdGnzXZ2W8X8/z+18orsrvqny2a492PpYv47q5faRfynN6/yCe/k+leGvzVQy9IAAAAAAAACEwAAAAAAAAAAAAAgAFY9RS1HV8z9Esfnvtr83Dp4LaWdjy2p0atvMc9V10JX3PBamzyXqvMU354lyfUIktASAAAAAAAAAAAAAAAAAACAASBIAAAAOv6T83+kdHhfL/U+U9Rn3dviPceHV6/otPq04b7yV1SzXzf0b5z9Gp2eWo7ujp1ve+C99bmp/Nek81XaYKdgJsPoXz76B0eD8w9Z5H1mff0+Y9R5ecfovy36l4a/N6Ln9F522HlPpnzP6ZXpptvhvozP5lcMsvT9h81+kfNr8vuOTo0W56j2ni/aJ+afTvmP06u3hbeot407fKer8pNfo3y76l4S3P6LT6Hz1ufxXtfFe1x9bT5D1/kE/TvC+68Lpw1Y5/dAAAAAAAAARMAAAAAAAAAAAAAIlAnGe3TzddXh19PgdHp8OI7+rDil6C0+eesLPj3Vxy+bsNJ3deuTh832c2Hqolh7gCJhIAAAAAAAAAAAAAAAAAAIABIEgAAAA7PpHzf6R0eF8t9R5f1Gfd3eM9n562HvPm/0H5nOfvqW6pZz839H+cfR69PlKO8o8+x77wPvr8tN5r0vmq7hTsAsvf+A9/0eD8u9Z5P1mfodXl/UeXtz/RuTtrd/G6KfXsp2eU+mfM/pld/l3svG+tp1Y1dtUzl675t9J+bJ9ro36Lc9R7TxftD5p9O+Y/Tq7eFt6i3jTt8p6vyk1+j8fdXb+NvqNO7Ps8V7XxXtcvT0+Q9f5BP07wvuvC6cNWOf3QAAAAAAAAETAAAAAAAAAAAAACJiSuPVnS9XzWdho9Zflzw4LeWflLqkOjq5fUnfVddCV1zQW5ZV3d5qL8WZx/ThG4JRIgAAAAAAAAAAAAAAAAAAIABIEgAAAA7PpHzf6R0eF8t9R5f1Gfd3U1zTX4/S/O/ofzyNvfUt1S25vN/R/nH0avR5WjvKPPse+8D76/NTea9L5qu4U7ARY/QPn/0Do8L5d6zyfrM+/q8v6jy9sPpHzz6D8sth63dp3I8p9M+Z/TFvl30Dz/qojyWmptqd3rvm30j5vbD2ujfotz1HtPF+0Pmn075j9Ort4W3qLeNO3ynq/KTX6T89+gfLbYer6OfoR4r2vivaZ9uryHr/IJ+neF914XTiqxz+6AAAAAAAABAAAAAAAAAAAAAQBOOXVp5uFbh19PgdPpsOE7uvDglTb+foOv1vDsOTzVlTnLzbOaHoqrfrx9QMPdBIAEJgAAAAAAAAAAAAAAAAABAAJAkAAAAHZ9I+bfSejwvlvqPMeoz7u2muKe/H6T559D+eRt77m6aW/H6rf8ANvezn0Y+Wp662V74j28b0/mvS+az7Qp2PXeR2W5/pu3w3ten53DZ869LXfPy/qPL07fovy36l8tmnrd2ndOXlPpvzL6YnX4XTXU6fbXfzP0FsPYadXg78n0XzXZxr1HtPF+0rr80+nfMfp1dvC29Rbxp2+U9X5Sa/Rvl31H5dOfq+3i6Jys+v5r7GaXOul8wj6R89934SNKsc/vgAAAAAAACAAAAAAAAAAAAEAJgrj1Z0/V8znY8/rL82evg75dfk7GkLLrq/UFzVdVGVvDv4TXv4rSt9GZyfTBHQCUSAESIAAAAAAAAAAAAAAAAACAASBIAAAAM/pvy+108/wBBa1nJr5mHLSdGXq+3+eXVKj31Lx8tseH23idmfX9I5vM57eVq9H47rp19vmu7hp2BXoAsfoHzW418qg9X5Swp1+m8vvr7Y/Tvlt/QTX1u7zuSnJ9M+W3qaPXljl6S7pOq2fvvm95R25fa6KXCctP0j5ZYRp7Sw8XOvn+m2+UJt/KdFfl6H075dfUE09Z0ebzmtX7XxVpTpu/IWVan6d4XqqbcvOMvVAAAAAAAAQAAAAAAAAAAIlAlEkEkY59OnndVNe1vT8/y9NLBliBMAG/fwiz08UllMbMvTDn94AEgAAQmAAAAAAAAAAAAAAAAAEAAkCQAAAAAAAgAAAEgAAAAAgAAAAEgAgEgAAAgAAAAAEgAAAAAAImAAAAAAAAAEAATAhOPLbm7MOHVpwdPNlZ7eXUzOM5yAAAABEh3cCnRbubp5/oQr0AkAAACAAAAAAAAAAAAAAAAAgAEgSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAiYSEFHJq09HiTEtfNBF7e+crT1vjeyxKIgkAAAACJDs41d7Zy9XN9CFekAQmQAImAAAAAAAAAAAAAAAAEAAkCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAECSDVbDZXte/hhpwgIkWOmdxWen8xYletaoAAAAAARIdnErvbufo5vogr0AkAQTCUQAEgAAAAAAAAAAAAAgAEgSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEiAAAAAAAAAAiYmAnltzc+pPV81Ek0AAEHV3cXeUoPU+W9X5QkAAAAAAAIWNdlXp7pwinT0TyK9HW0b8vRCNwIACQAAAAAAAAAAAAAQAACZAAAAAAAAJRDp5kAsAAAAAAAZb5rzM8IkA7+CahFwAAAABvV0N2lIJAAAAAAGxGtliAkBHfwzSBFgSAAACAASCJIQrOri6PAka+cAAAiYLLPtpDSC/q4uDzqJAAAAAAAAOzZw9wIMcdiNN08fXzfQyKdqJhAAJAAAAAAAAAAAABAAAJkAAAAAAAsJpq9v27+n53yXlvU+Ww9h6Lzvrk2K3w6fn6ubMn553c1pz+1bLfDo8OrWmSanxf0v5xl6PBdVH0ynVHRhSdPh3PlPU7q3+VO3i5fpvqFbZ7ez5X5txfUfDc/t08xOXpe7zsNnX8tVreJpU0fsPM06/JbtPsMPZsLWavq+bs6jZaJ+XavX+Q5fo7b1Pnfc7eT4Cov6DH1rn01F7TfyPnlZdUuHseku+H0vR4nzLm7OPm9963z/0bXzfmWndpy9MW6OP19tu6Pn8Pl31L5bXqxIw9kAEgAiUCUFSUWiUSmJ5rc3HjLq+ZCagACAbz03kvS+bAI9f5D2B49EkgAAAAAARIjq5pO9EgGEZ8ldrJhly/TSI1hMAJAAAAAAAAAAAABAAAJkAAAAAAHR9FrLvp+cl5j0+nJ5Ly3qfLcv0L13kfXTHqPnX0X5xr53Exc3uz6jy3qdOT1vz/AOgfPdfLrfW+Q9dl6XqPnH0f5xpwZfRfnv0Ka+Z8f6ny2Ppeh9r4P3m3leJ8/wCj87j6/wBQ07q/p+e7dnz76HG3zuv+ifPOf2Z26Nter6jQ31B1fM+KiHJ9S+h/PPo23l9fzH6T8zUy+nfL/piOf539H+cNL73Hh/cacPiKC/oMPZ9F7TxftN/E8FTXNNz+57H03mfS9PgfNePs7ub3/R3J1/M/L9O7Xx/WWP0Dk7On5vVq8P6ppcfLfqXy2nTiMPZgAJABEkK8G7Rq6fnrZp3c/uwI2cXdW6eZrHT4IAAgmO72Z4X2HtPAnltcwSCPceH9OWvhPuPy887MSAAAAAAAImDq3cXaSCNHRzmXZy7cPX2xMY+1MSITCQAAAAAAAAAAAAQAACZAAAAAAsq32V+T0nnvQ/Nt/G3fQ/nn0OunkvLep8tl6b13kfXTHqPnH0f5xp53AOf33qfLep04vW/PfoXz3XzKv13kfXZel6j5x9H+caeft+hfPfoU18l5b1PlsfTuve+C97t5Xi/O+i87j6v1Cusa/p8D597TxdvzfQe/+e/QvKb+P5Tbq28v0P1Ggv6Dr+Y8QOT6p9G+c/RtvK3fM/pnzNV9M+Z/TDV84+j/ADhN97jw/uNOLxFBf0GHs+i9p4v2m/ieCprmm5/c9j6XzXpenwPnHuqv0NdTXs14Pl9pV+p5fpPT+a9L8928mr954P3mXo3Hy36l8tthiMPaRMAAAIEnHyWNd0/NZWNZsLKccub6JVWtbt5esb+KIB1nJ7K09YatsxLX8Z+t/HISAQLKt6z7P4T3XjJeCRMAAAAABA3+vuD5ivKMd3D2GyYkc/RznRq2a4162OXJ9QEaomAAAAAAAAAAAAAEAAAmQAAAAAPpXzn6jv43H82914Wutn9D+efQ78fkvLep8tl6b13kfXTHqPnH0f5xp53AOf33qfLep04vW/PfoXz3XzKv13kfXZel6j5x9H+caeft+hfPfoU18l5b1PlsfTuve+C97t5Xi/O+i87j6v1CvsK/p8D5918ndyfT/SPOej8x1fOeQ26tvJ9L9RoL+g6/mPEDk+qfRvnP0bbyt3zP6Z8zVfTPmf0w1fOPo/zhN97jw/uNOLxFBf0GHs+i9p4v2m/ieCprmm5/c9j6XzXpenwIr7D58n0l9QX80+X+w8f6rD1/TfMfp3zO/Ly+88H7ynVcfLfqXy22GIw9pEwAAAgBV2vFr5XMR0eHtsarZn6Flp2ZYerUt/ouv5zyvV9A9Er5D12+ZQkAc/xr7Z50+XtmuEwD1FZ9UOnyPr6mXyJMQlEgAAAgX9H9dKXXz+4l4/wPta+Hlurl6ToRI5+jQbiTHo5Ovm+gInP0UTCQAAAAAAAAAAAAQAACZAAAAAB1/S/mv0ro8HzXjvYePz77P6H88+h6ed5Ly3qfLZem9d5H10x6j5x9H+caedwDn996ny3qdOL1vz36F8918yr9d5H12Xpeo+cfR/nGnn7foXz36FNfJeW9T5bH07r3vgve7eV4vzvovO4+r9Qr7Cv6fA+fegoPofP7ll4j2fzPTg07dW3D3fqNBf0HV8v4gcn1T6N85+jbeVu+Z/TPmar6Z8z+mGr5x9H+cJvvceH9xpxeIoL+gw9n0XtPF+038TwVNc03P7nsfS+a9L0+B5/xPfwc/u+3v6C/6fA+X3FPjy/Q/UvDey4+jwPnnvPCe7y9W4+W/UvltsMRh7SJEAAASIYZTOdS6Ofr+XCclvT+9jS3vkzmEgAAAOb5r9T4j5hYfRtsNW3h8jL3mj5TXQ9n4vD0R5zL6P4E5gAAIn0RZ+u6/Kyy9Xydh52k9z4M8ZtwQ7piRo36DcSaerSy9HoHP9ACUTAAAAAAAAAAAACAAATIAAAAAOz6V81+ldHg+Y8h6/yGffZ/Q/nn0PXzvJ+W9RYU6vD+t9Hnfly+c/Rtdub5c+os/Q+W+pq7SnT63579C+e6+fV+u8j67L0vUfOPo/zjTz9v0L579CmvkvLep8tj6d173wXvdvK8X530XncfV+oV9hs6vnfNemU9dazymWPN9E26tsbfUaC/oOr5fxE7PovP7vzb6L2Z7+Rz/M/qupHy/wCl7dpwfOPo/wA4z7773Hh/cacXiKC/oMPZ9F7TxftN/E8FTXNNz+57H0vmvTdPgfNOPs4+X6P29/QX/X818v07p5Pprn2tHedXznnuq4Tnj8t+pfLcvRxGHtAQmAASAgDGrtuXXyeMdHiR6bzV0fVpxylIBwHeAAQTHN5Y9f43yVebdRBs7fphQ+wzmUUl2Ph0XlJAAQWf1nzXq5PDet80exnzm4vPFe18YeO4b+gh2bObqHP0c5vkGrbprr2Icv1MiLokmAgEgAAAAAAAAAgAAEyAAAAAEdn0r5t9J6PC8x5D1/kM++z+h/O/omvneSor3y2Xo+4sPm/rb8nqae4+c34/UvDMfV7rvy3qVvW/PfoXz3Xzqv13kfXZel6j5x9H+caeft+hfPPoc18l5b1nk8fTuveeG9zt5XjPO+h87j631HZrr+r5zi8dg5Ppgr0turbNfqNBf0HV8v4i7pHL9L7i5+XfRujxe2ls/mavuLr5b9MTq+cfR/nFOq+9x4b3OnF4ig9D57D2PRe08Z7PfxfBU11S8/uex9N5n03T4HzTj7OPl+j9vf0F/wBfzXy/1Hl/Y4exf1Vr8w18z2dp8x95G9x8t+pfLa6YjD2gESIBIAABCtfptK7p+ew+xfH/ALHpwdskhA8T7TxZ7cQRzfP5ez8d5WIbdQTHVZFL6TbYnrunynqpSADxfgPr/wAghKJETB9auaK7l46vz98VnD6ODyvNhmU/mPVeWhPdX9ps5+jnOgDHIRv5Ovm+iDPvAgAJAAAAAAAAABABMAl
Скачать книгу
Яндекс.Метрика