От микроорганизмов до мегаполисов. Поиск компромисса между прогрессом и будущим планеты. Вацлав СмилЧитать онлайн книгу.
(Richards, 1959) модифицировал уравнение фон Берталанффи, чтобы оно соответствовало эмпирическим данным о росте растений. Функция, также известная как модель роста Чапмана – Ричардса, имеет на один параметр больше, чем логистическая кривая (необходимый для асимметрии), и широко используется в исследованиях лесного хозяйства, а также для моделирования роста млекопитающих и птиц и для сравнения влияния ухода на рост растений, но имеются и возражения против ее использования (Birch, 1999). Ее точка перегиба колеблется на уровне от менее 40 % до почти 50 % асимптотического значения. Тернер и др. (Turner et al., 1976) называл модифицированное ими уравнение Ферхюльста универсальной функцией роста. Гиперлогистическая функция Блумберга (Blumberg, 1968) также является модификацией уравнения Ферхюльста, предназначенной для моделирования роста размеров органов, а также динамики населения.
И распределение Вейбулла, изначально разработанное для изучения вероятности отказа вследствие изменения свойств материала (Weibull, 1951) и используемое в тестах на надежность в инжиниринге, легко модифицируется для получения гибкой функции роста, которая может дать самые разнообразные сигмоидальные функции роста. Оно используется в лесном хозяйстве для моделирования высоты и объемного прироста отдельных видов деревьев, а также объема и возраста полиморфических лесных насаждений (Yang et al., 1978; Buan and Wang, 1995; Gómez-García et al., 2013). Двумя последними пополнениями по-прежнему растущего семейства сигмоидальных кривых являются новое уравнение роста, разработанное Берчем (Birch, 1999), и уже упоминавшаяся обобщенная логистическая функция Цулариса (Tsoularis, 2001). Берч модифицировал уравнение Ричардса, чтобы оно лучше подходило для универсальных имитационных моделей, особенно для представления роста различных видов растений с отличающимися вегетационными периодами, тогда как Цуларис (Tsoularis, 2001) предложил уравнение обобщенного логистического роста, включающее все прежде использовавшиеся функции в качестве особых случаев.
Логистические кривые являются любимым инструментом специалистов по прогнозам благодаря их способности отражать, часто очень точно, траектории роста как живых организмов, так и антропогенных артефактов и процессов. Конечно, с их помощью можно сделать ценные открытия, но в то же время я должен предостеречь от излишнего энтузиазма при использовании логистических кривых в качестве инструментов прогнозирования отказоустойчивости. В своем вердикте Ноэль Бонней (Noel Bonneuil, 2005, 267) вспоминал «золотой век логистической кривой, когда Перл с энтузиазмом применял одну и ту же функцию к любому случаю роста, от длины хвостов крыс до данных переписи населения США» и развенчал заявления об удивительно точном применении этой модели к историческим данным, назвав их «сомнительным триумфом: большинство процессов ограниченного роста действительно напоминают логистические, но это мало способствует пониманию исторических процессов… Подбор кривых слишком часто вводит в заблуждение по двум направлениям: его не только не следует использовать