Эротические рассказы

Ломоносов. Иона РизничЧитать онлайн книгу.

Ломоносов - Иона Ризнич


Скачать книгу
же. Т. 10. С. 412.

      12

      Там же. Т. 6. С. 464.

      13

      Саамы (лопари) – небольшой народ Севера Европы численностью около 31 тыс. человек.

      14

      Информация взята из мемуаров К.-Г. Манштейна о России.

/9j/4AAQSkZJRgABAQEAYABgAAD/4QBORXhpZgAATU0AKgAAAAgABAMBAAUAAAABAAAAPlEQAAEAAAABAQAAAFERAAQAAAABAAAOw1ESAAQAAAABAAAOwwAAAAAAAYagAACxj//bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/AABEIAsECnQMBIgACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/AP7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACijNNZtozgn6UAOoqFmYMuSQM9AAeM9zx9KkYZz6jkduv8A+r/69ADs4601W3DP8qjVHDFmOc8beuB9e/QGpMYOQO2P19KAHUUUUAFFFFABRRRQAUVnahqdlp1u9zezeRCjom7azl5JH2RRQxx7pJ5pZMRxQxI8sjkKqEnj5d8f/tFxwaDqc/wyg0nxDr0iahD4Yl1a4vYvD2oX2ma3/wAItqOoaxfaba3KaX4Y0jxM6aNrOoi4fU7G6hvY20c/Z2dQD6taVIwXeRQqglicKAPUk4wKzf7ZszfzabHOst7b20V3NEqkiKGd5EiZ5DthVpDDMY42kV2WKR9u0A18d6N4w8bXHi3wjaa9rNzfx+Lh8QdWilsLD+z9HvNK8KaSE8PW1lY6hfX4txqes6vJrOlahqFvp93cWukabZ3t5Pc2N3Yz9Dq3iG70a70nT1kfR9Ot9NsxrmrahaW22ciH7ZdHUdQN6NOtoPEK3njHdNbJHPb6ppTXkqgHTbfUAD6RuvEyWyWz/ZLqTz5xbyNFF50Nu3k+eJLieN/Lhhmx5EFxMY4WnliR2jDbqzm8Uak/2dU0zyhPO5F1vW4sxbRTCOSF5I2SSHUkU4lt5YhAsquLe4u1BK+dS6mNZ0s6ldwvdaf9ilW2vbRbmxGImkjukgv7S+S6aCMxFwyNbWFxYT21yrXM1rXHtY6hpWrGTQ7lZrG4vYkvZItSE2lre3FxZXz22qWCzI95pWp6Fe2lxpV4kt5qPEheCSBZVmAPb7fxjdR2rzahp07SxpM7RafBNO7iAiIxwwFPtTXEtyHghRoFgnlKfZ7qWFjMu9p/ibSdRnntLe/tmvbaRoriyZ0ju4mW4kth5lszCZFklhlWJyu2VQJI2eNlc8JoU1l/Zttepaf2dcSQTadPKZPLuontpzZjSpW1GL7Vf/YpFaCykvItoV4rZvLZnKfKHxi8Qar4K15YoLzw3o99q9vBceGdQbXoH1HXZ7G6SXVdDsvD2pxafqMHjaH+0bCfQ9QsdXt08R3MEUl1b6FaQazcXYB+hSsCcbw3tin1+eehftEeOfDMWna1rkkPiXwLNPpthqd/rg0nRPGPh+7vtQudLvp9QtdMeTS5bXQxHZXevaJcz23iS1W+S40u68SX8dx4cg+y/DPxG8LeINkFlqUTXb3P2cQkyDzJntUvY/JaZIZGjntWMsEskUQm8m5jQebaXMUIB6DRUayqxAGckbh06fUE5+o496koAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApG5U9RwelLTJASpA/H6f/qoAh4AxnAGeeuPf8KcjJ67vQ46++D61GykoyrwcECkEfzK54ZVxgdOnPPueaALG8NnGMr0z/wDq68VGsoxgEg5/n7YP86FUMeh+XkYwOv4jp3/zl3lZ3ZGC2MtnnjpwO4560ASg8Akj/wCvS1XMC7No5w2/BPUn1z/n9KlKk9+OOO3Hv/XFAD6KKKACiioZZ44v9Y23jOTgAD3JIH+GRn7wyAUtT1Sy0izn1DUr+y0+xtgrXF9f3EFpZ26tIsa+dczyRwwiSR0iV5HCiR0GCSFPwl4s/wCCivwIj1+PwL8Idc0z44+P5o7zzNI8FeI9Ah0PSbjTNc/4R3WNP1nxRqd5DpllrOjahHe/2rpH7ybSBpt2mvyaMfIM/wCGf7en/BSfTv2pPif4u+DvwW8U6tefstfCHxv4P8HfFH4gfDTVtIv5PiB4o1fx3P4e8Q6tJPHJcXWjfDfwDf8AhnWNE0TxPfGDwJ401O48R+IG13TdH8EW3iKy+sfhr8CPDtp8WvhR4huYNA0fU9O8I+IvDV34s0LRNA0i41fSfGl1PY6tJdaj4SmC+JrPxD4K0XUYtE8Qa7bXqtqH9updSXN/rGiSSgHv+jfH3x1+1H498SfD+SPTtQ8NeD7FLbxZPpPhrxHpvhLxBF4j8Mafqfh+/wBK1TxXp1mdDuNRPiDR7rTbaHxB4jeybT/FGkeJbRor/TJn+hPDXha/l0bwFor61FJJ8NbfXNQ8X+DkTwb4ivfHWha1eak6XhOmaFZXOnWNt4svLbxdFc6P4e0mDUNY8P6NpmppFomoa9HaeAeFPD2sfCD4o6zdeJNYhstI+Jfh631TW9TXwhLZtZahpPhjTNMsLqIeD73TZtevdUvvB974s0y/Giy6ro9pYQaVq+q+HbfVtHi1b7I0mY6poFnqlv4j0vUtZsdUuV07xLoRvIPD2r6dp19mz0zxNZ6jfa1q8Sto1+lpqutIzi6+S81J4XY6c4Bo/DS11CNtQ0zUtVt7my0+/wBJvdG1Cxg169vLXVLA3a3EevTeKfF3inVJ5ZdMSyWRhcWcdvqr+II7m9v0fT5D6Xq3gO18TaZc6YFt7Szt7ZbfTrJohcJF9jkuZ7eRrW+VHa2W4S1msJk8udLZ9tvd/ZriXHn66XMdfhWS/W01W7j1M2epC8FybjRTf30evQLqUd39qk1KwsJNGs5Zp7B9IhXT7VtKLQT31tb+yaRBqHlD+07syzxNZvZ3YidPJ2xtiC4ggnhe4tFl3me6XybK8PkyRW0KBMgGfovhyLwrZQWKnz9PjWFZdrmCKXc6wz3C2TXTqt7LNJNNcIVuVliS3hiKLGbdzxFD/Ymhz3aRLcwIlmLS1t4Fhu/tltdT3UcrkLAEhisIIYZ7ffbqbGCW3aa2hbenZWc51G3UalaC21SC3iFzbwzGWLzpERpDY3RjV5bVpAPKm2JI0JzLCn3ao3dlb3Udj59pcXbRXkq2zJ9paCK6lF9ZiR4Xa4aOKOC7u0lvJkEcQMckAX9ykQBgWlvc6ZpyyfZ7uSSazlupbC/1G4WO2uLqNE8mW523dys7MbV3jka/khnnmlNxIQbh/nr9or4Y6f4n0vw8l1Zf8JDqdmskOn2Mi+fe6bFqb2nhvU9c0i11Ga+stPk0rRdQnaS4ltp447t7aFbrRri5j1W3+ndcv4reG3229zqN0JPJitYId1xcySLLBJFFJL5flJIskjfah8qW9ncSndHGQ9LTNLMN9e6xqKWt9qU7jZdNaTpcrbtbxQqI0l81VQIgi+x6fDbpGsgXUzdXYllYA+NPi/8ACebwl8IPFtxGk+qG61a6vdH0+3t7p4vDt/4m8TXUf2mSDSopZNeWx0vWopLG5vZYLDTr3TRrwg0mS2SWD2TwxY2PhjQv+Ee1uW3uvEmj+GPB+s+J72S5vpG1TUrrRk0LS9SutIuptUCPe6hpepWFpZywXVrPcGO6t5b7VbZ0i9f1i38NXt/pY8TyaZdujz3+iaJfpFe6hLd2kmZLuz04SO7Q2azRicG3kKtJbG8lspohG3CDVX1TxFrOpWMUUFpHFp1zq2pPFaXU11KrvZ2nhDTNRhW4srlrM+cL6Y6pd6b/AG3f6pHakG21IgA4zQfit4p8EfEjU/AfimPW/Fen6tYQat4S1WOHQ7eIym91+1k8N6b5Fws2o6kNL0iz1Z9OupH1iJv7Wk+y+S9ru+mPBfjXQPHvhzSvFPhu9+36RrFlDf2cxgubScQzjIiurK9ht7yzu4WzFc2l1BDcW8yPHLGrKRX58ap8P/iT42+JLfEDUr2TSntb/wAQ2GleHDo51XVbvw5b3en23hF9T1G/fRrfR4rOTw/4r8SWDaqlpa6jqfiu3judQtINJstY1C14n+IfjP4PfErUNd8PaJLqXh69uE0bVtMv9F8U/bdWvbf+2NUvJPDx0nw5q82s3GnwWjzWLvfXVt/ZupW1hqniPS4NBW2vgD9Ks0V5h8L/AIr+Cviz4asvFXg3V4dRsryEPLaNHc2mqafL50tvJb6npmoW1jqenzQ3NtcWjpe2VufPtJ4xuML49NVgwBGcH1GCPYjsaAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIxwpJ6YNLSHofof5UAQoQxGM+v5E+3samzyR3FUnlIBCnaSXXnP8IznjsRnHHX86ersC5IOVwcYycEdcZPXP50AWtoBLY5OM/h/WlqsZGwAQfm6dAOvr1+vFSqx25IP49etAElFJnjPbj9aWgAopCcDNRmULjcMAkAHI6noOccnoAMkkgAUALIxVGK43DGM465HrntzjGcdK/mT/wCCtn/BSzWdY+Iy/sFfst+KLW++I+uX9/4L+I1vY6prHhrUfE+t67pVxoj/AAz0Pxhpukaqnh3RvCf9qTeNvil46S31K00//hCpvhFDpGt+JPFuoQeGP0+/4Ki/8FAfCH7Af7KnxS+LK6tot38V9M8O28vwz8CX1nrOtXfiHxBqevaToGlm80vw5Y32oxabJfavbQQT3J0q1vdRe20mPVrS7uklj/h4/wCCNfijT/i3+0rH8V/jTrWieKNW1nxCljpsfjXTPEfiPxfY6v8AEfVPGXxI1tL7Xr7T107RNQ0j4uaJrXxV8V+INXudIk16106xk0fWNahjj07TwD9fvhD+yXPbeBrO31WGODw/oniH4pfCvUPFdjo+nW1vdRw/DnwB/wAJr4w0/wD4RS48P2Pwx1DxJqHwouvAli1jYax4P8I654F8LWsfgtNS1TXtX13+gf4JX0Xxr+Bmg3yNp2kDW/DmifbbPwfZ6hfL4YltdZuNe8BaldRx3M6XsUuna9LJ460i+1G5E9uGaO1aB7qVeP0TwDapdz/D3XNR0/ZqPiTV/wDhX0vnX6X8E/hvXfEt1o11ocHiGws4INT+Hsk9hcX+g6PbWl22n+H7TXdK1/ULXWdOtpqmm/C74ieDPEA8U+Dr+Xw94isre51S80ZNCa68PeILcWel2uq2XiHwbatZQaDdXlyVvNX13SE0u013UbLTr+4ljvWj1SIA+rvEPw+Txlodnoeu+I7s6zZy3snh3xP4dsdR0q9glurG4aZQwutVttfspohp5vrY3mpW/wBt0nR7ttGuLuMyN514d0Txt8Nb/wAR2Hib+0p9E1+78N3+ra1oi3AtdN1R438K3epaBAml3drp51CCLwRHrt1Br2kTCO01LW7vTW1SW+hu+g8P/Fx9RRYPEqaR9tk1PUdGCOP7H0XVpY/7UWS80jxXYRSaTZtP9g8u3i8T3WkvMiWEEAuL3H23uLLXry81W+XTtTv9KnPlW0ceu3kF9pl1BZQ2VukiELaypqF0t/HafZbuQadb6i0Bktr2e+SWQA0fDulWEljYXFvqAvbSe11BtRML22h3ElxPcmVb290iGPUNPbWLC5kvLe7dxY6rC0lxaX1pdXEV1aWffaJJdSNbg7fsElvGmmzSSWtxeSTDzDHcHUrW7miUyWvlQuluZUWWDbNCsNx9mj8x8T+PvDmlzW91fXENlqiS3f2i809yMw3NtdXcMVubePfbX1xHLaXKzeItKt40s5NWnizFpl7c2fC+H/ib4nS2vA+r6Tq8sFp5lxcSeH00C3SFbFRprQWMmuXutm8ubmZGWR9O1FjCy3ou9H08zSkA+r7BHhy8LyeZlllhWd5YkYxxMmbaX7LJat9niiMSxrsSGfYqhORh+J/Edkum38SaxaW168qWEdpOyvONVvLJ20+1WAXKSPKJJIb14YZdy2tqzyKkHmzL5jHFrWry3UNzbQXC3kSzXKiC70+S9spU1aGxs4Da3kIttQRbOKW7NxeS2cj3ktr9vW4itZ16JdFFrdxm001LO8uHcrqKxzQGWeRbb7FFrEsd0+o6rEbUT/bJr55rK/SGCGSCa8gtLiIA05vGGnxyadJGDbahc28Ic3EG24S7eKe0e+uNPkmsZ9Qhthp95afa7dTGrW+208+0vlxmTeO9XBS+0rQWmsEtYo7fztTt7Rti6jFHciG18ySxIe28nVrGfUdQtbm4tHisPLsmuXv0vaToCWWnwREy3ZmtYLKfzmhuijwRTWkcgeaARiaBjDK8nnahLstYlFzeogY3otKlby5rScrHFHCkVu0Lz2qMktzJcuxt4Yo7u9xPeafLBELyGH7JZSRxxNuKgHhOta14v1Qw3F/of2e5WbT7SFrObxFY215Pd21lB9rvFS703VJLOa8jnmOjHVtRtr1I7KfxLeaDHaalfQb8XizxtZWllcSjw1ZWUdhFeaqv2PX9OERt7eRryG0SzvJbSG6OtyrGbqRtR0dLYatqVwbyIba9PnsrSCSO7micwRSR3/2CXDRQXFlBJBDdww7be3cpLe3Mt0jSzYknNytz9oW2DZWpadKZT9mtdPVbO4mRw0F35MjW9xbalpl1axWsawM0TW0dtM0Dxta/aLyS01GOa5mZgDN07XrHxFHLp1tp2nXklykt5fWt5dxNa2892IJbNNTv3Ekl06mSxe6jtZYFRop7GS1N3BZ+dR+IHhG3msb/AMQ2Ph3RNS8TwaLqVrY/23eywaZc2mm3f9oaZZF7O31C3jjutdktZZbmfRbx44p7iaRIjNJE2Lc6dBaalpt0sqTNbLfXl0GlhvzPLqS2Ju47uZ9S0pZH06K4t5LsjTry7kEuj2wmMsjxWlrTvHMEMdxpXiB5P7F2aZZveapJPcW2nXVxeRWUC3l9Pb7bq1t3udLnOpx6pfXEVprenTXMUNpK02lgHzN4HtvFP7Ovw1+FmrBbNdbh8QXfhvX/AA1oCWst18SfDVlf6ne3GqWXhiPTrKWbV7eG81PxLZnTGtL7Qlu7W31q91nSI5rw/oJ4P+J3gzxnoh13QvEOmXmnxarqOh3E6XURih1bS7lba+sxMSI5zDJJCyTQloLi3uILmBnhkVz4D8StAv5fDT2Cahb3U50nWtF0i/1CzjbSItb1q1v9JtI9ShZ7eW71LXo9Z/s5Iba5s/tGpX9ummJZJqHkr+T3xY8f+Nv2YvjP4f0TwZpuv+HfBfjCKx1DxJ4lXU4rm2vZNV1C0gbWH0zUtY0/4bza1408Q+JJrCPwt4duNJ8bXF7qGsfET4k3k9pPNq9qAfvzYeM/Deqai2k6d4g0e+1NY7uU2Frf2txdeXYTRQ37eRHLvb7DJdWiXoTc1o1zbrcLE1xCH6pW3AHI7/z4/Hkce/evyGuvi98UPC+hTSS+GNB8O6TY+IPDmp+DLHR9Y/s7xdq/gpNVi8LeO9T8Yx6u+m6P4N1Lw3qN94d1Ozim1SXSvEdzrllp9v4g06xvNLvI/sP4WfFTxbpfis/DP4pXdpq2rzT2b6F4ns9LvrSTfrK301p4b1ia305NA1a5sL7RPFGkR+ItHuILYppeiwa7Y2uqa7pV9roB9cUUitnPsfzHr7Z96WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACg88etFITgZoAb5ad1B+vPX/P60eWuCMHDYB59BgfyoD5wMdT/AJ7U7cPX/P40AJsB65Ppnt9KUjIx2o3D1H50uc9OaAAccelFFFADGYBSc84OMYznpxnIzngA8Z4Nfin/AMFZ/wDgrZ4L/YAstC+FnhtP+El/aA8eeDte8e22ladZ6d4h1P4c/Cnw5OqeJvihP4In1bS7/wAZXVnZ2evT+GvDdhJ9mvb3Q7m58QXenaNbyG7+zP8AgoL+3B8K/wDgn5+zV45/aM+LV9HbaD4Yia20vS0vLC31jxX4iksb6+03wt4Ztr2eEaj4g1k2T2ml2eDAtzILrUJINNt7u4j/AMyj4w/Gz4m/to6zrvxz+N3iC/8AE/j/AOKeja74i1XXYryY6ZoXgq5m1/xb4H8NaJrGl3k95YXXwcOq6p4v1vwrZePdH8H/ANl6Lb+A/G0OlahpdppnhUA8x/aU/aK+MX7T3xPl+KHxq8
Скачать книгу
Яндекс.Метрика