Эротические рассказы

Глоссариум по искусственному интеллекту: 2500 терминов. Том 2. Александр Юрьевич ЧесаловЧитать онлайн книгу.

Глоссариум по искусственному интеллекту: 2500 терминов. Том 2 - Александр Юрьевич Чесалов


Скачать книгу
systems, and is commonly used to create formal models of the effects of actions on the world. Action languages are commonly used in the artificial intelligence and robotics domains, where they describe how actions affect the states of systems over time, and may be used for automated planning13.

      Action model learning is an area of machine learning concerned with creation and modification of software agent’s knowledge about effects and preconditions of the actions that can be executed within its environment. This knowledge is usually represented in logic-based action description language and used as the input for automated planners14.

      Action selection is a way of characterizing the most basic problem of intelligent systems: what to do next. In artificial intelligence and computational cognitive science, «the action selection problem» is typically associated with intelligent agents and animats – artificial systems that exhibit complex behaviour in an agent environment15.

      Activation function in the context of Artificial Neural Networks, is a function that takes in the weighted sum of all of the inputs from the previous layer and generates an output value to ignite the next layer16.

      Active Learning/Active Learning Strategy is a special case of Semi-Supervised Machine Learning in which a learning agent is able to interactively query an oracle (usually, a human annotator) to obtain labels at new data points. A training approach in which the algorithm chooses some of the data it learns from. Active learning is particularly valuable when labeled examples are scarce or expensive to obtain. Instead of blindly seeking a diverse range of labeled examples, an active learning algorithm selectively seeks the particular range of examples it needs for learning17,18,19.

      Adam optimization algorithm it is an extension of stochastic gradient descent which has recently gained wide acceptance for deep learning applications in computer vision and natural language processing20.

      Adaptive algorithm is an algorithm that changes its behavior at the time it is run, based on a priori defined reward mechanism or criterion21,22.

      Adaptive Gradient Algorithm (AdaGrad) is a sophisticated gradient descent algorithm that rescales the gradients of each parameter, effectively giving each parameter an independent learning rate23.

      Adaptive neuro fuzzy inference system (ANFIS) (also adaptive network-based fuzzy inference system) is a kind of artificial neural network that is based on Takagi—Sugeno fuzzy inference system. The technique was developed in the early 1990s. Since it integrates both neural networks and fuzzy logic principles, it has potential to capture the benefits of both in a single framework. Its inference system corresponds to a set of fuzzy IF—THEN rules that have learning capability to approximate nonlinear functions. Hence, ANFIS is considered to be a universal estimator. For using the ANFIS in a more efficient and optimal way, one can use the best parameters obtained by genetic algorithm24.

      Adaptive system is a system that automatically changes the data of its functioning algorithm and (sometimes) its structure in order to maintain or achieve an optimal state when external conditions change25.

      Additive technologies are technologies for the layer-by-layer creation of three-dimensional objects based on their digital models («twins»), which make it possible to manufacture products of complex geometric shapes and profiles26.

      Admissible heuristic in computer science, specifically in algorithms related to pathfinding, a heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, i.e., the cost it estimates to reach the goal is not higher than the lowest possible cost from the current point in the path27.

      Affective computing (also artificial emotional intelligence or emotion AI) – the study and development of systems and devices that can recognize, interpret, process, and simulate human affects. Affective computing is an interdisciplinary field spanning computer science, psychology, and cognitive science28.

      Agent architecture is a blueprint for software agents and intelligent control systems, depicting the arrangement of components. The architectures implemented by intelligent agents are referred to as cognitive architectures29.

      Agent in reinforcement learning, is the entity that uses a policy to maximize expected return gained from transitioning between states of the environment30.

      Agglomerative clustering (see hierarchical clustering) is one of the clustering algorithms, first assigns every example to its own cluster, and iteratively merges the closest clusters to create a hierarchical tree31.

      Aggregate is a total created from smaller units. For instance, the population of a county is an aggregate of the populations of the cities, rural areas, etc., that comprise the county. To total data from smaller units into a large unit32.

      Aggregator is a type of software that brings together various types of Web content and provides it in an easily accessible list. Feed aggregators collect things like online articles from newspapers or digital publications, blog postings, videos, podcasts, etc. A feed aggregator is also known as a news aggregator, feed reader, content aggregator or an RSS reader33.

      AI acceleration – acceleration of calculations encountered with AI, specialized AI hardware accelerators are allocated for this purpose (see also artificial intelligence accelerator, hardware acceleration)34.

      AI acceleration is the acceleration of AI-related computations, for this purpose specialized AI hardware accelerators are used35.

      AI accelerator is a class of microprocessor or computer system designed as hardware acceleration for artificial intelligence applications, especially artificial neural networks, machine vision, and machine learning36.

      AI accelerator is a specialized chip that improves the speed and efficiency of training and testing neural networks. However, for semiconductor chips, including most AI accelerators, there is a theoretical minimum power consumption limit. Reducing consumption is possible only with the transition to optical neural networks and optical accelerators for them37.

      AI benchmark is an AI benchmark for evaluating the capabilities, efficiency, performance and for comparing ANNs, machine learning (ML) models, architectures and algorithms when solving various AI problems, special benchmarks are created and standardized, initial marks. For example, Benchmarking Graph


Скачать книгу

<p>13</p>

Action language [Электронный ресурс] https://www.semanticscholar.org URL: https://www.semanticscholar.org/topic/Action-language/72365 (дата обращения 14.02.2022)

<p>14</p>

Action model learning [Электронный ресурс] https://semanticscholar.org URL: https://www.semanticscholar.org/topic/Action-model-learning/1677625 (дата обращения 14.02.2022)

<p>15</p>

Action selection [Электронный ресурс] https://www.netinbag.com/ URL: https://www.netinbag.com/ru/internet/what-is-action-selection.html (дата обращения: 18.02.2022)

<p>16</p>

Activation function [Электронный ресурс] https://appen.com URL: https://appen.com/ai-glossary/ (дата обращения 05.04.2020)

<p>17</p>

Active Learning/Active Learning Strategy [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary (дата обращения: 27.03.2023)

<p>18</p>

Active Learning, Monica Nicolette Nicolescu, «A framework for learning from demonstration, generalization and practice in human-robot domains,» University of Southern California, 2003.

<p>19</p>

Active Learning, Brenna D and Chernova, Sonia and Veloso, Manuela and Browning, Brett Argall, «A survey of robot learning from demonstration,» Robotics and autonomous systems, vol. 57, pp. 469 – 483, 2009

<p>20</p>

Adam optimization algorithm [Электронный ресурс] https://archive.org URL: https://archive.org/details/riseofexpertcomp00feig (дата обращения: 11.03.2022)

<p>21</p>

Adaptive algorithm. [Электронный ресурс] https://dic.academic.ru (дата обращения: 27.01.2022)

<p>22</p>

Сжатие без потерь. [Электронный ресурс] https://dic.academic.ru URL: https://dic.academic.ru/dic.nsf/ruwiki/38681 (дата обращения: 27.01.2022)

<p>23</p>

Adaptive Gradient Algorithm. [Электронный ресурс] https://jmlr.org URL: https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf (дата обращения: 18.02.2022)

<p>24</p>

Adaptive neuro fuzzy inference system (ANFIS) [Электронный ресурс] https://hrpub.ru URL: https://www.hrpub.org/download/20190930/AEP1-18113213.pdf (дата обращения 14.02.2022)

<p>25</p>

Адаптивная система [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Адаптивная_система (дата обращения: 26.03.2023)

<p>26</p>

Аддитивные технологии [Электронный ресурс] https://books.google.ru URL: https://books.google.ru/books?id=6EYkEAAAQBAJ&pg (дата обращения: 27.03.2023)

<p>27</p>

Admissible heuristic [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Admissible_heuristic (дата обращения: 09.04.2023)

<p>28</p>

Affective computing [Электронный ресурс] //OpenMind URL: https://www.bbvaopenmind.com/en/technology/digital-world/what-is-affective-computing/ (дата обращения 14.02.2022)

<p>29</p>

Agent architecture [Электронный ресурс] https://dic.academic URL: https://en-academic.com/dic.nsf/enwiki/2205509 (дата обращения 28.02.2022)

<p>30</p>

Agent [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary/rl#agent (дата обращения: 26.03.2023)

<p>31</p>

Агломеративная кластеризация [Электронный ресурс] https://biconsult.ru URL: https://biconsult.ru/products/aglomerativnaya-klasterizaciya-v-mashinnom-obuchenii (дата обращения: 26.03.2023)

<p>32</p>

Aggregate [Электронный ресурс] www.umich.edu (дата обращения: 07.07.2022) URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#A

<p>33</p>

Aggregator [Электронный ресурс] www.techopedia.com (дата обращения: 07.07.2022) URL: https://www.techopedia.com/definition/2502/feed-aggregator

<p>34</p>

AI acceleration [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/AI_accelerator (дата обращения: 27.04.2023)

<p>35</p>

AI acceleration [Электронный ресурс] https://flibusta.su URL: https://flibusta.su/book/38568-anglo-russkiy-tolkovyiy-slovar-po-iskusstvennomu-intellektu-i-robotote/read/ (дата обращения 06.07.2023)

<p>36</p>

AI acceleration [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/AI_accelerator (дата обращения: 27.04.2023)

<p>37</p>

AI accelerator [Электронный ресурс] https://flibusta.su URL: https://flibusta.su/book/38568-anglo-russkiy-tolkovyiy-slovar-po-iskusstvennomu-intellektu-i-robotote/read/ (дата обращения 06.07.2023)

Яндекс.Метрика