Эротические рассказы

Душа машины. Радикальный поворот к человекоподобию систем искусственного интеллекта. Пол ДоэртиЧитать онлайн книгу.

Душа машины. Радикальный поворот к человекоподобию систем искусственного интеллекта - Пол Доэрти


Скачать книгу
чтобы использовать роботов в производстве, сельском хозяйстве, гостиничном бизнесе, на промышленных кухнях и в конечном счете в домах людей.

Выживает сильнейший алгоритм

      Нерелевантные результаты поиска – вечная головная боль для интернет-магазинов вроде Zappos. Запросы могут иметь несколько разных значений для поисковой системы сайта, поэтому получить точные результаты порой непросто. Потенциальные клиенты, подбирающие туфли к платью определенного стиля и получающие платья вместо туфель, вскоре от этого устанут и перейдут к конкурентам. Чтобы решить эту проблему, Zappos сталкивает алгоритмы друг с другом в цифровой игре «Выживший».

      Эти так называемые генетические алгоритмы, по сути, являются алгоритмами рандомизированного поиска, имитирующими механику естественного отбора. В этом процессе человек, наткнувшись на полезные результаты, использует их, – например, оптимизирует маршруты доставки или проектирует легкие, но прочные конструкции.

      Генетические алгоритмы были впервые представлены в 1960 году Джоном Холландом, крупным ученым в области психологии, электротехники и информатики, но применять их стали лишь недавно: раньше не хватало вычислительных мощностей. Компания Zappos начала экспериментировать с генетическими алгоритмами в 2017 году.

      В то время на сайте компании ежемесячно появлялось около миллиона уникальных поисковых запросов. Поисковая система должна была сопоставить эти запросы с более чем 100 000 позиций в каталоге[26]. Генетические алгоритмы моделируют процесс естественного отбора – по Дарвину. Система Zappos, например, создает алгоритмы, которые определяют смысл поисковой фразы.

      Один алгоритм рассматривает в определенной фразе как сильный сигнал слово «платье». Конкурирующий алгоритм в этом же запросе уделяет больше внимания другим словам. «Тест на релевантность», имитирующий поведение пользователей, вознаграждает победителя и передает его черты следующему поколению. Алгоритм, который лучше всех справился с поставленной задачей, и начинает работать на сайте, пока его не заменят более эффективным. Таким образом, поисковая система постоянно совершенствуется.

      Менее чем через год использования технологии генетических алгоритмов компания обнаружила, что клиенты быстрее совершают покупки и применяют меньше фильтров: покупателям не приходится постоянно переформулировать запросы для уточнения поиска. По словам Амина Казеруни, ведущего специалиста по обработке данных в Zappos, «в конце концов, это не постоянные расходы: подключил – и работает»[27].

Прогнозы все точнее

      Люди регулярно и часто без особых усилий перебирают вероятности и, даже имея относительно небольшой опыт, действуют в соответствии с наиболее возможными из них. Сейчас специалисты обучают машины подражать рассуждениям с помощью вероятностных моделей, основанных на гауссовских процессах; такие модели позволяют действовать в условиях значительной неопределенности, работают


Скачать книгу

<p>26</p>

Jared Council, “At Zappos, Algorithms Teach Themselves,” Wall Street Journal, July 8, 2019, https://www.wsj.com/articles/at-Zappos-lgorithms-teach-themselves-11562578200.

<p>27</p>

Hilary Milnes, “How Zappos Used AI to Rebuild its Search Engine,” Modern Retail, August 2, 2019, 2019, https://www.modernretail.co/retailers/how-Zappos-used-ai-to-rebuild-its-search-engine.

Яндекс.Метрика