Эротические рассказы

Физика на пальцах. Для детей и родителей, которые хотят объяснять детям. Александр НиконовЧитать онлайн книгу.

Физика на пальцах. Для детей и родителей, которые хотят объяснять детям - Александр Никонов


Скачать книгу
друг к другу, то нам это сделать не удастся – они не захотят даже приближаться друг к другу и будут отталкиваться с ужасной силой. И только приложив к ним еще более страшную силу и добавив немного нейтронов, мы вдруг увидим чудо – склеились!

      Как же так? Почему? Что их удерживает, если силы электростатического отталкивания стремятся раскидать протоны, которые отталкиваются друг от друга, потому что положительно заряжены? Что пересиливает? Что держит?

      Отвечу: ядерные силы.

Ядерные силы – это очень мощные силы, которые намертво скрепляют нуклоны в ядре.

      Но силы эти очень короткодействующие. Если силы электромагнитные действуют на дальних дистанциях, то ядерные – лишь в пределах размеров атомного ядра.

      То есть, прикладывая громадные усилия по противодействию электростатическому отталкиванию, нам надо сблизить нуклоны настолько, чтобы короткие, но очень мощные ручки ядерных сил схватили их и начали противостоять длинным, но тонким и относительно слабым ручкам электростатики.

      Отталкивающая пружина – электрические силы. Крючки – ядерные силы

      Ядерные силы – самые мощные силы в природе. Их по-другому даже так и называют – сильное взаимодействие.

      Еще раз: сильное взаимодействие – это сцепление нуклонов на короткой дистанции, в пределах размеров атомного ядра.

      Но даже этих мощных сил не хватило бы, чтобы удержать в ядре одни только протоны, без нейтронов. Вот вам и ответ, зачем природе понадобились нейтроны. Для склейки ядер! Поскольку у нейтронов заряда нет, а ядерные силы есть, нейтроны таким образом «разбавляют» общий положительный заряд ядра, уменьшая электростатическое отталкивание. И только потому большие ядра могут стабильно существовать.

      Причем чем больше номер химического элемента, то есть чем больше в нем протонов и, стало быть, электростатического отталкивания, тем больше требуется нейтронов для разбавления. И потому чем ниже и правее расположен элемент в таблице Менделеева, чем он тяжелее, тем больше в нем нейтронов по сравнению с протонами. Если у углерода на 6 протонов приходится 6 нейтронов, то у ртути, например, на 80 протонов идет не 80, а целых 120 нейтронов.

      И еще момент. Вы, разглядывая таблицу Менделеева, не задавались вопросом: а отчего в этом наборе элементарных веществ (химических элементов) всего порядка сотни наименований?

      В таблице Менделеева на сегодня больше ста элементов, но самые тяжелые из них, с номером более 92 в природе не встречаются и были получены искусственно учеными в ядерных реакторах. Почему же сверхтяжелые элементы (так называют элементы тяжелее урана) не встречаются в природе?

      Потому что их ядра нестойкие. Даже образовавшись, они вскоре распадаются. Они такие большущие, что их размеры превышают радиус действия короткодействующих ядерных сил. Которые уже не могут дотянуться с одного края атомного ядра до другого. И ядро разваливается, как разделяется слишком большая капля под собственным весом.

      Именно поэтому в нашем мире меньше сотни


Скачать книгу
Яндекс.Метрика