Эротические рассказы

Рождественский незнакомец. Ричард Пол ЭвансЧитать онлайн книгу.

Рождественский незнакомец - Ричард Пол Эванс


Скачать книгу
id="n2">

      2

      Брецель – печеное хлебобулочное изделие.

      3

      63 градуса по Фаренгейту ≈ 17 градусов Цельсия.

      4

      Берл Айвз (1909–1995) – американский актер и певец в стиле фолк, лауреат премий «Оскар», «Золотой глобус» и «Грэмми». Песня Have a Holly Jolly Christmas входит в 25 самых исполняемых рождественских хитов в Соединенных Штатах Америки.

      5

      «Супертрэмп» (Supertramp) – британская рок-группа, чью музыку относят к направлению прогрессивный рок.

      6

      15 градусов по Фаренгейту ≈ –9 градусов Цельсия

iVBORw0KGgoAAAANSUhEUgAAANIAAAD8CAYAAAACP/oEAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAScJJREFUeNrsfetx20gT7di1/5eOwFDd+99QBAIjEBWByAgkRkAxApERkIpAVASCIhAcwC3BERgbga9GXzd52Ox5AAQl2sZUqbzLB4hHn+7TPf349OvXL9OtbnVrv/W5uwXd6lYHpG51qwNSt7rVAalb3epWB6RudavVZaN2+Netj1n/52vy/Pr36/XvJvLzve6uHQ92Oot0HCCy4Enpf88cn0nFS9evr2Xwfvb6Z19LIn4vef37acErwdkBtKN2xwqS9PVvGLAsV/BS6QBaJl62gFvw//y/H2X++s/y9e/+9fP2b+gBhQWbfc+e2614bxFrFbvVAek9lxXUS8/7ExJqXpUA0ZA+I5e1UAkK/SuY7HcvXv8GBLKfDCr8IoEuB8s25O+//tnvnxHV7KxTB6SjsEYDsiSJ5/1r8fKQ6RkJ+EJSPqJ5LOQTpHivQCgBJIZBRVQOLc0IQLsQYBsRUB87MHVAOiRAhtIXIR/lRrFGhizHQKF0t8rh7esvr++/IHWzgADASH/pnn0oOq8MrFtO//YIdNbSpAS4uaB0AwDjin7ntnviHZAOSdcyAYp7ElS0Jgi2W6Hdr+F9awH6wpJoVoxp2pkCvkfydx7h9ekrKPqvf1+I8hVgaSyYboRPtoCgxhNYyOvukXdAOgRds4J7Di9nQLUS8H2kg79QAgxW2JfWb7FCrwBKAmZBYCiV964FAAugfKvXv1MKSDDwUmGVegTWHn6XlEDSPf0OSHXB0tMibSR4CwCPUaiWpXgLh0UZkHa/JqHNySpsBQIIUCck9HKVBIhTx/u8ZhRUMOL41vqNGUwyuEHnfa0AdcL0VQnFd0DqbsEuiAQ9WvtA9Dpbnp5DoKwlQhAuFVq4tkau87B+Cgn9CfkrLNh39H5F72PQoKTfs3Ru7Dn2DCzTAr6fwzVkMgjC9PX179kX0v8b1z9/c8CALEKpACFFegXRsyVp7AysUiFoEC57/BGBMBEUKtcshgYo8m8MWbNKvL8MWCbXGtN1YgTwjqjevQh04HmjP2XBvOpg9JdaJBLshdneCOWI15uwMsDIgbefXZEFwHUGmrxSfmrqsTx3dc/bWhICzt6L9pxG4ryvCBgugOee4EQHpL/IAhkRCEgVa/TmpJOfdM/AIqHTfJ6UhHIu3ivY4pDw50Ig84++J6/nVZBlkr7eyKEYnl6/g75bT1ouyuR4VDImOiD9ASBKzCZilij8n18fgsNt/SHe+7kgsBjFCee9lxtBsQohtByRO6GQdHkM90aAvAA62XeAiQMWfK2p2D/jTejrvyls/rdYJKRwCKInxRoxkFg7y+jXnUJ3UMAuiMrdKQKYHwuANJBTNBCt1cjznREGJyA8vgQA3mLWxZ+8PsnSiU+fPv2JFumFwGEF5txs0nLsHg6Hc5+Vr1qhPwVrhNbL/pXHAAwSVvv3r6CrFgw/yL8rGx7bWulLAscYj0MRzme6FyvK0+NtAo5wVnQPyz9NrhA7fzyQSOhf6H/7Zju0ay3HjB56StoUfal+TGStxfPMSCi/EcgLz+dTsrS8QRxa9jrmbUfZBGjW9wu2CxjQfamQ/iQg/ZHUzmYfQJJmIt7G/78EEK1Ie+8EC97hfG8J7AsCeuUCEdUS3ZMlGEaCiCntPQUCWktEFQGLCdJYoIaNc/Z+l6jg5z8QRBxJ6pEWRo7OGQel4gs9iEPNGwI4qfmdG7OdAV4oYXakWc8QBGmy7P14cQkoRSt/UnLrW/QttPlKAYsRBR4y8ToHJZw5e/SbifK6/fzbeXRAapn+RGgopjrahmfCnJ0oHa+KLBLvoUTv15AQ3JAfdt9AyK/E/489gFsoFojPfUzUlf/GwvHHxbl2PtCnBDorzHa/6MV37+l+ncrzI6VQQFDiHi0iUO8XJWTOn8uOPWjxu2U2cEDgi6RGkBJzHrAoc+LqY3qIA/JHKubyNSzfNQGBH/jKKFkGlOhaRDjcan4caeaJAqA5fady+ER2jaA4MBFCek/Cj4JfvX7+BCgvKiELvhOXr0PXp11jH45n74VViOwz9eD+2ZD5E/hxS7juK3MEe2+/vUUiYeiZ3QrSTFCjjB6qy6lewoO3+0OfKPcsmjqSdXgx29WtUzpehedMlmriAdEYrODYEZGTmrqgSNhNjANP2eUnZjfDItXoFuXxaUmxPRGMYTrbU57V1vHM9iZvSiBmHwsBMnEAc3DMGei/E7WbgNaXnN+A6ZclAFsgaiEMuxAAylmoBdX7CVRsFBDyvgNEbDUkiBpt6NI5jhz3Vfv8yITz+HIjGrHQuW9ROAIMbvJmUOw4FeBGwOB1DjsgxWn7zPM631y50fmNKR18vxCCZ5QH5rM41+RoP5JA4HndkXBZwecshYL8t7c+CQC0koS+aHhLrs1uP4eLfcLIEBhYWxlfMEGAqZDAIut1Y6B/BP3GlAIFqQDTKTyTS4jwVQ7A4Kb5ZQekSG1PwuhyyEsWStBmPQgy8EP7LjRmRdSrjKCPL2ZTAZvRcR/5vKhAbkQJpCVYjmchADOyVL69oCTgg10p/t2+FlXL/TsPfH5EFPjU4x+9BTbgPnFY/FGAqYQIaeZQeFeOU0mOtXzjaIAE2QJDvPEQEFhbIxKyCTjB/O9EONqsMb/IAjoHiLSo2FpLutpUCeFakqUaa0JHPsUt+U5ZRPRR9e9aWFNJj2s+r1QyCPI1M6Z15KcuJZiENUwcrw8Uane0VumYLNLA8d9XiiBdk/bLlEiUqUulMKlVcPOleJBXrs1MAusn0t6loIpDEq6f5PNY0I4CIXYpMG/pSEQh995QJTpVBgRao723dB3PBJCfImCxoud3LwCLPtNXYWV6CphTB5CyYww6HBOQzqTfQzd4CFGxkm7ihKiApp2a+CNDRfOfQhIqAjWNBOeAOply0IEtDFusPHCIzHFdrjL2JgvvVRICkflfCFv6bW/dkIBy3YHAD8kqr8ymhF27toGIYobo61UHJPdKpWUx2ykwuRJl0vhyG/lca1qmWLdYGrQQWpUBNAoFCxxBl++cnLpH8GLnmHX814ASuYX7lYvn+EMAIPFEDu1+2wlTcYfCGXZA8vtHXs0jLNQArMdyT4tUR6jzyK/afRuuPzqRlC+wXNTt3HzApiTdg4Hwr07MdhYG9rCwVryv7M/1lPvZa2Bhe8cWdDiWzIbUccOl/zNUqMid1Vqvn7/zaLDQWgmt+MzHE2CuYo9PVidv6X6wpT1r+b5/i/wcRvWWELiZvd6nK3gWvchrv6BreYi08JwBkdN/D+iclh2QdP+oNJtE0okiXN8UBzzfA0As9HYfKIeHmhh9o3L8gfeoIOFp7B+RRe+BZew1ADZmbqTifKrI+815jVHZ3dTgEq/hzUJSbt5/JAcfCqpj8ZEyoAy5wxc5Ux78tMVzuPDQwrcUl49+WAzyPRI4b1lBKJGyWNp5zZnhZrsYsvT4bjOzSQoulMBODvf5kjJD1GkawtpxDuKCSkv+DiBRg8FHsU+EkbCVotWWAKxMCHdrRWqQXzYymyzwnKzQ6TuDyJWxvY7c1Q2B00YpBm8G4vp9QHpSLJR8FheBe3shcxEBGHeCvk8ouPHssFgPymsfmov33tTukh7APTmraHkKyjz+Dg8590SWpnVTZWCKQxHYoV/WPO6QfKlUaPi70Eawh8Zp9OrJbNoSW4twGkHlMjo3vs938CxiAzQzopWaUL8pm6aRRNp4Xbisr9EzznPFf+LPlx8BpPemdj+AntwIR7ZwaOOVQ+DrZmzfEhWxAvjSRuUlHffZ6KHhNz/LkfLUBEjn5FusM6ix2pUyDX7S+My3P/O/Pax7AJEV+BX0eIgCElhrbuwyBUvd3zMcfysA0heKrOewngWB5kLz5XiC4W8PJHqwvgvhLIGBAFmh3LTZHudhz+HFbJdaxBS2RfkLiiOei2sY1gUtaV9pFTkrWqb2cEFcjyxUH4R9RsL2Fq62ygcqiHF9jzyvFZVu3FCuYRtbDYlgGbnZTUzWnhP3MC/Fc+VlFebte00fPCS1G1CAwAUCTvTsCQCVygO0RXj/mU0RXR4DZOPfRGSB6u9xjRgaX3fRod9/NLutjeusqdndeLQFjBevxz6HY3OB4TXcv1L8Lhb/3SuCmddUTjzbianUeI+MdKRmVrlqGSuVIhPrVtGv3/Ed/+w9gHRIavev0cOrJdyYREaNwAKxo49Bh15MtA56G0ifRQrMviXMPY8DXDg+F2uVSrMbbudpFhce4U8gMLPu3kM09NHsRkNzzbLQ5zP62xlsRiDP6N99uqquhPL9KRTIvkGl6ncHUuqwBj0FCFtdcyhzWnLvCWj+PAAiSV2WlF3QJ/pTOazKPr7MFUzNS4UwNHKAYWqE9CkmBKaR59gzLnuA8pBMEbKRuH/cpegn0aNH5R5lEdSrjuX1Cft4z9KR7+8BpINH7axGE4LfI67+DYQtRuPwZ8ee30oARNzTwFrG/5ASvH5uDsAcaOdsNlMamBo8KAGOqdlkOb81mVRoRmk2m4/rZormf7VFRQSYbM+FSvh413Q/5gSoChTXOkmUfKeBQ9DfOqmKTPWErgd9vQdFcVXGM0C6ruW1/RvM9sgcvm+jmhvtxUdZpPcIf+PN+aoISGriNlZHBqZEONYEbugFFN7ZKJaBUPRWShCDXTQ7RP9BbaxIEbCpcZdry4pWbvQxpCDEm2Md2qMiH/E7WaMeHGsCv82+URZBtWZG2T6g+3Ua8SzGQmHttTFOyu0EGEzVMJBRRL7W+jpYp1Xg40vu08av2bqdA1i+xGw6qp6QpsOWunxTeVod7oRfEChuBCjGMWF2smByONfK7Lb41YDKIJiGAAUlJMOGtyk3e+z5KAGH9L2aaAbOxQpxSQ1e+Nx+oiwc4nffu9Pq8J26ZU7AeS4d/J0FeaH4c5IGzGL3qmBc5ReKAn6hXfxSiTT1Fb/mjZJG9I7DKX7LSNrCwZuTFvZ88Fyqd+xEm8lmKg4lIZ+nea+e44ekdngBC+LBh7rRuB/11p2GqNgkgm5uOfdEN02TlKCYjG+iMadkVS7Nbu8462d58/pION7GXgp/Tt7/vadfQKn/mdnuTGsIzOO2enrDHtdcgLQAyurqyDQPgOu3BdIPxRL0DvRbsr/BBCJnM3DQcxKGxCOky0PfdBK8GZ8bpC5x3uGZ3U+JDEbkhxIYyM+Tft+KfLu2f5dBm2FaEEUe5xQ91IAkQ/iZosx/+2CDNLezAxz7CjRXAhr6lP77km52HzYThw21sH04BW6+tgCsQvhWx7IyAo5VLt/puosDKhgsZ5HWx8rNFU1ILJTgB65/pTLnzrgNcx8/FEjvsqNMQm8FvQ+RN07vvwcQ5GAN5IDkHG62C2RWwB/aoEu/y2Ln/Z3XlIBkfet1CzWySvxe4VFERj5zWo9GzxpvZf0J0ygGQHH4pi4VSzJVHphckspwaPeEggfLvwVE7xhEGCpUdSUo2tqHjQwAbXUgomhsekiqd0iLhDx1ajaTINr2QS7ZMoGQP5hwiHhl9BZc6EhP3xM4ondF2WKggCtrx20PGmuB7tvE0kuKevLiPuFNgxhc8l6KRpv50QKJqFSl7JCvHci6DrzVIDFcFmididA4EyMaR8osBNr4fDCeeqV38EnWUyNez6U0DWqalPqo3DTsF95QHnqR95Ajq9y6a4n0u6mVE6AZwPmU4rO9tp5zG9TO+iOykjFRbm6dSNG3GoKn+WTnQM24hHwrQVWUeJRILfjmMvWg0mf+GxxKCGFqBOfQ2fs4odLuNEax0KY3Z71zZsXBQURlM1x+bv/9qcw7ktdbQqCg7Q6qpQhE3SlKeNHWj7VF7ThT4MRnaiNBZLVp7J7TNwkqkTA6p4wFC6QXelg5mftL8UCNCDg4Z7OSpTiYcHKVLsw14u2DLwFLgFsMahpQBA38SlawqAMio29vXFP61anvWi21Y0XXYkj9B90/bGMg/eHq2ID0ZoXQPDfQaDcEgLLGzUSLlFI/7Z60UsSVK4oEVfQ9l4Z/dLxXmk3pe9HkIZDAZWa7BsvZNEQAKokUZHue0cmeCg1c1gRRYvx7hKkYBOeL1O0ME6NrYxZQ1PDxtgbACWU5pN+bHhOQCngIl+Skpw0EbAKOZh1n1bgoJWm5Z2EVr5Xzx/OQx1yayEztCEvzVowGE8wtBeVBXbnZhNcLBVC+xc3/VwSiKuKeD8ymOI9p8LiBIpxEMA5rmZyTNGjbYibvvQZSYgO+oEmhsKA7hXFsWSmlVdm7A6kSgvuiCHTowd6C5shjHFeHz8CRnsQDNuf5iw1BLnXIIxUBPjivo00Pa0l/IxLqS74PJCyrGhTrLVMioPWlgJ6ZTcb4g9TaNdagxudmnnsy9igIqSzvXWlUShCpFKBbz65S6t3mTUGwd/Y3TJzOXA8ZG/w5jvGLhOEEHH3c03kboCzMc0baCi3HmG7kr4DQ4cOZ7rPbDdblm0IZuUHHU4yg0rFuhXAyqJ6OLHSNzy5m1brPsLG+ovL6oQgO7MgEfBeV+VrBiM36dWY/U+OQnMqF2GnLR5qTsGhJojFU4ZQ0RAUCNRTBCvv/Nw7/yACIXP7NnIVZlEvs5XCCdUGKwHs3PPzsjUZR0OOO/JDKcawLcX4J0dFr0rQ5AfSJaGDloW7sUEcHRqDPYKIwC81HWZq4so66QQRWJmMISnwDaq7JBP7W0GyKO7UxokvBiPZSUm1lNqRktivlgqbiQXEfgAwplRCIpGHkUKMaHFKujN5EsNXcMSovWFIu3hezXUqd0kN7oVC6Kwv9xiN4GQnTWzm4tdzymkh735tNg/okAkBDGEPDIfSJ+NO6mY4j7mHeIBp3ZnbTsebKZ7T7NzKbAQYljKRJQCYqUDiZ2W2C+SFA+pdObAwA6tP+BZ8wDyjmPgA8pGqhTH7LHaD0rXvS5LK/wIBM/YKF2GxPzs7NgRbMVz0xu81QJgFAxT7YIR1nAb3covdHoClKaGyLyi7o+fY9/s9btXJL97MUclB4Pptz0xclEjv3BR4+2iLxhuInAhAGDRaO6A6b50fZypgeDrcOvlAE/kw5B9dvJIEIz0EXCJtmRRlQt9A8ZWufixRUP0CThyQwt55gjkbjHk3cRIgpVzo7FAaeY05/I9/c2YildTDCY/2IOEYiQIRRUe5au4JOS41KfdrckHVpvOtIDp0RoPpE9epospnx7w2ZtoHkaOOVQSRMWrskcP/QDzKKb/ImnNAjIqtBgVNSZmNgCJqmNg7/MmpfquXaqAeQiTH5SNgnPipvkyKxI1JMD/wdKNs3BqYMms1UxQ8Bku9hXNUEpC9DQqUblCMno3gx6ykCMNdmMwkjqSG83LiQN2+zPe7vesAYVMeGejjkZMm4IeSQNLwVmn/NdkN9p4KKDakfYC2BYSwo3Qi3NqKzNhz93NfNWyCA0rglQmtlFJpJVObnsIb7Qg1QLhRfKKnZ44HBcAk06IuJS5lfRYRgz82mejVpqGSyPW/v1ogT8GteFBAxpeorVp2Bdw2alycLyudw8YEgQjpcKhR9Wqf3uyOimSl+39emx2wzRShVzHrPEcHhEuIVpew8xlJFBwdmBzKlvguS9nBR3hkIXjA7GZqVSHBlBLDsneSKQ+pLuOaMhB/3qnKt4QpRm4WgtCPwFUrR6+8oyi3o/E7Ehvde5SUiwCAjgQPTcFP2Iyb2/VAslPE4lKFly49XJDBTaIqI/sUF3cQSgHS3x8N966cNDRVTxfe6Ax+MR9ZkAAQG+jezPZYk8dC7JZzDpxrnvKRrt1b7u9H3sb6CoM7MEa2Wy9uv4R4X0PswhuoeFEjc4SVTLJIGkrNARKmseeN4ssTK4YCXDn9t1cID5i6hP8VbY805r5FIyj
Скачать книгу
Яндекс.Метрика