Эротические рассказы

Характер физических законов. Ричард Филлипс ФейнманЧитать онлайн книгу.

Характер физических законов - Ричард Филлипс Фейнман


Скачать книгу
Может быть, завтра я что-то забуду, но что-то я буду помнить и по этим остаткам смогу восстановить все заново. Я не очень хорошо знаю, с чего я должен начать и чем кончить. Но в голове у меня всегда достаточно сведений, так что если я забуду часть из них, то все равно смогу это восстановить».

      Доказывая теоремы, невыгодно каждый раз начинать с аксиом. Вы не сильно преуспеете в геометрии, если станете доказывать всякое положение, каждый раз отправляясь от аксиом. Конечно, если вы располагаете определенными сведениями в геометрии, то всегда сможете вывести из них кое-что еще; но гораздо выгоднее поступать иначе. Дорога, которая начинается с выбора наилучших аксиом, не всегда кратчайшая дорога к цели. В физике нам нужен вавилонский метод, а не греческий. Постараюсь объяснить почему.

      При евклидовом подходе наша задача – подобрать как можно более интересные и важные аксиомы. Но относительно тяготения, например, мы могли бы спросить себя: какая аксиома лучше – о том, что сила направлена к центру, или о том, что за равные промежутки времени описываются равные площади? Если я буду исходить из того, каковы силы, то смогу рассматривать систему, состоящую из многих тел, орбиты которых уже не являются эллипсами, потому что силовая формулировка говорит мне о взаимном притяжении этих тел. В этом случае теорема о равенстве площадей несправедлива. Поэтому мне кажется, что аксиомой должен быть именно закон сил. С другой стороны, принцип равенства площадей можно сформулировать в виде более общей теоремы для многих тел. Она довольно сложна и совсем не так красива, как первоначальное утверждение о равенстве площадей, но, несомненно, является его порождением. Рассмотрим систему многих тел, взаимодействующих друг с другом, например Юпитер, Сатурн, Солнце, множество звезд, и, глядя на них издали, спроектируем свою систему на плоскость (рис. 16). Тела движутся в разных направлениях. Возьмем в качестве центра произвольную точку и подсчитаем, какую площадь описывают радиусы, проведенные из центра к каждому телу. При этом будем учитывать массу – если у одного тела масса вдвое больше, чем у другого, то соответствующую площадь будем умножать на два. Так мы подсчитаем все площади, описываемые радиусами, а затем сложим их пропорционально соответствующим массам. Такая сумма площадей не будет изменяться со временем. Она называется моментом количества движения системы, а закон – законом сохранения момента количества движения. «Сохранение» означает всего-навсего, что величина не изменяется.

      Вот одно из следствий этого закона. Вообразим множество звезд, которые сближаются друг с другом, чтобы образовать туманность или галактику. Сначала они разбросаны очень далеко от центра. Звезды медленно движутся вокруг него, и радиусы описывают определенные площади. По мере их сближения расстояния до центра сокращаются, радиусы уменьшаются, и, чтобы описать прежнюю площадь, звезды вынуждены двигаться гораздо быстрее. Таким образом, сближаясь, звезды вращаются


Скачать книгу
Яндекс.Метрика