Эротические рассказы

Как не ошибаться. Сила математического мышления. Джордан ЭлленбергЧитать онлайн книгу.

Как не ошибаться. Сила математического мышления - Джордан Элленберг


Скачать книгу
и не приблизились к разрешению нашего спора. Что представляет собой число 0,999… на самом деле? Это 1? Или это некое число, на бесконечно малую величину меньшее 1, – число, принадлежащее к совершенно необычному классу чисел, который даже не был открыт сотню лет назад?

      Правильный ответ состоит в том, чтобы вообще не задавать такого вопроса. Что представляет собой число 0,999… на самом деле? По всей вероятности, некую сумму такого рода:

      0,9 + 0,09 + 0,009 + 0,0009 + …

      Но что она значит? Настоящая проблема заключается в злополучном троеточии. Не может быть никаких споров по поводу того, что значит сумма двух, трех или сотни чисел. Перед нами всего лишь математическое обозначение физического процесса, который мы прекрасно понимаем: возьмите сотню куч чего угодно, смешайте их вместе и определите, сколько и чего у вас получилось. Но бесконечно большое количество? – это совсем другая история. В реальном мире вы не можете получить бесконечно большое количество множеств. Чему равно числовое значение бесконечной суммы? Его не существует – пока мы не зададим это значение. В чем и состояла новаторская идея Огюстена Луи Коши, который в 1820-х годах ввел в математический анализ понятие предела[47].

      Лучше всего это объясняет Годфри Гарольд Харди в книге Divergent Series («Расходящиеся ряды»), опубликованной в 1949 году:

      Это замечание сейчас тривиально: современному математику и не придет в голову, что какое-либо соединение математических символов может иметь «смысл» до того, как ему придан смысл с помощью определения. Но это не было тривиальностью даже для наиболее выдающихся математиков восемнадцатого века. Определения не были в их обычае; для них не было естественно говорить: «под X мы понимаем Y». С некоторыми оговорками… верно будет сказать, что математики до Коши спрашивали не «как определить 1 − 1 + 1 − 1 + …?», а «что есть 1 − 1 + 1 − 1 + …?»; и этот склад мышления приводил их к ненужным затруднениям и спорам, зачастую носившим, по существу, чисто словесный характер[48].

      И это не просто непринужденный математический релятивизм. Тот факт, что мы можем придать какой угодно смысл той или иной последовательности математических символов, совсем не означает, что нам следует это делать. В математике, как и в жизни, есть как хороший, так и плохой выбор. В математическом контексте правильным считается выбор, позволяющий устранить ненужные затруднения, не создавая новых.

      Чем больше членов ряда вы суммируете, тем ближе сумма 0,9 + 0,09 + 0,009 + … приближается к 1. И эта сумма никогда не превысит данное значение. Какое бы плотное оцепление мы ни устроили вокруг числа 1, в конце концов эта сумма после определенного конечного количества шагов пройдет сквозь него, но так и не выйдет наружу с другой стороны. По утверждению Коши, при таких обстоятельствах нам следует просто установить значение бесконечной суммы равным 1. Затем он приложил немало усилий, чтобы доказать,


Скачать книгу

<p>47</p>

Подобно всем математическим прорывам, теория пределов Коши имела предшественников; в частности, определение Коши было во многом созвучно с концепцией границ величины погрешности биномиального ряда Д’Аламбера. Однако нет никаких сомнений, что работа Коши представляла собой переломный момент: после него анализ стал таким, каким мы его знаем сейчас.

<p>48</p>

Г. Г. Харди. Расходящиеся ряды / Пер. с англ. Д. А. Райкова. М.: Изд-во иностранной литературы, 1951. С. 19. Прим. ред.

Яндекс.Метрика