Шанс есть! Наука удачи, случайности и вероятности. Джек КоэнЧитать онлайн книгу.
данное событие. При честной игре в кости все такие значения равны, и вероятность выпадения каждой цифры составляет одну шестую. То же самое и для лотереи, но там вероятность выпадения каждого номера – 1/13 983 816.
Полезно представить себе размеры выборочного пространства, чтобы оценить, таким ли удивительным является кажущееся совпадение. Вспомним совпадающее время в «Формуле-1». Гонщики высшего класса обычно все мчатся по трассе примерно с одинаковой скоростью, так что логично предположить, что три лучших результата будут отличаться друг от друга не более чем на одну десятую секунды. Если точность измерения составляет одну тысячную секунды, на интервале в одну десятую у нас 100 возможных результатов для каждого спортсмена: этот список и определяет наше выборочное пространство. Предположим для простоты, что вероятность каждого результата здесь одна и та же. Тогда существует вероятность 1/100, что второй гонщик придет в такое же время, что и первый, и вероятность 1/100, что третий придет в то же время, что и двое остальных, а значит, общая оценка вероятности совпадения всех трех результатов (получаемая путем перемножения двух вероятностей) составит 1/10 000. Достаточно малая величина, чтобы удивиться, но все-таки недостаточно низкая, чтобы так уж поражаться. Здесь примерно те же шансы, что и на попадание мяча в лунку с ти-бокса в гольфе.
Подобные оценки помогают объяснять фантастические совпадения, о которых любят писать в газетах: скажем, когда в бридже образуется perfect hand (идеальный расклад), при котором каждый игрок собирает по 13 карт – от двойки до туза. В каждой отдельной партии шансы для такого события исчезающе малы. Но каждую неделю во всем мире играется несметное число партий в бридж. Это число столь огромно, что за каждые несколько недель в ходе всех сыгранных партий обходится все выборочное пространство. Иными словами, следует ожидать, что хоть где-нибудь да выпадет идеальный расклад, и будет он выпадать в полном соответствии со своей малой, но все же ненулевой вероятностью.
Впрочем, использование выборочных пространств не всегда совсем уж прямолинейно. Статистики предпочитают иметь дело с так называемым очевидным выборочным пространством. К примеру, для вопроса об израильских пилотах истребителей они, конечно, включили бы в выборочное пространство всех детей израильских пилотов истребителей. Но это был бы неверный выбор. Почему? Мы зачастую склонны недооценивать (занижать) размер выборочного пространства. Потому-то совпадения и кажутся нам столь удивительными, хотя на самом деле ничего удивительного в них нет. Здесь все сводится к ключевому фактору, который называется «избирательным сообщением результатов» и который традиционная статистика, в общем-то, как правило, склонна игнорировать.
К примеру, идеальный расклад в бридже имеет куда больше шансов попасть в местную или даже общенациональную прессу, чем неидеальный. Часто ли вам попадаются на глаза, скажем, такие заголовки: «Бриджисты из Ноттингема получили совершенно обычный расклад»?