Математика и криптография. Тайны шифров и логическое мышление. Р. В. ДушкинЧитать онлайн книгу.
ключ. А взламывать такие шифрограммы ты уже умеешь, то есть твоя задача сводится к тому, что мы изучили на прошлой неделе. Да, в этот раз расшифровка намного более трудоёмкая, поскольку придется несколько раз подсчитывать частоты и выдвигать гипотезы, а это непросто. Кроме того, надо суметь не запутаться и сопоставить расшифровки друг с другом. Но при должном умении и старании все получится.
Чтобы узнать длину ключа, используются два метода. Один из них очень трудоёмкий и требует множества вычислений (в наше время их можно поручить компьютеру, а раньше ими обычно занималась целая комната специально обученных сотрудников со счётами или счётными машинками). Но этот метод гарантированно определяет длину ключа. Ты можешь прочитать о нем в специальной литературе или справочниках – он называется «метод индекса совпадений».
А вот второй метод – именно что хитроумный, но не всегда работает. Его мы и изучим. Он называется «метод Фридриха Касиски[1]». Идея заключается в том, что в обычном языке, на котором говорят люди, очень часто повторяются некоторые группы символов. Это коротенькие словечки или даже буквосочетания вроде многочисленных «ОРО» и «ОЛО» в русском языке. Грамотный шифровальщик избегает использования коротких словечек (об этом мы уже рассуждали на прошлой неделе), но вот с частыми буквосочетаниями это сделать сложно. Так что надо искать в шифрограмме такие повторяющиеся буквосочетания.
Итак, в шифрограмме мы ищем повторяющиеся группы символов. Лучше всего, чтобы длина этих групп была не менее трёх символов: если будет меньше, то велик шанс пойти по ложному следу. Это происходит из-за того, что разные двухбуквенные сочетания из шифруемого текста были зашифрованы при помощи разных символов в ключе, а в результате получились одинаковые буквосочетания в шифрограмме. Если группа символов длиннее, то такого практически не происходит.
Расстояния между последовательными появлениями одинаковых групп в шифрограмме будут кратны длине ключа. Так что мы подсчитаем расстояния между всеми этими группами, а длина ключа будет равна наибольшему общему делителю всех расстояний.
Иногда это не срабатывает, так как из-за использования большого числа алфавитов разные группы символов исходного текста могут случайно получиться одинаковой группой в шифрограмме. Такое возможно, если текст очень большой. Тогда криптоаналитик должен внимательно изучить разные возможности и отсеять то, что не подходит. Мы не будем практиковаться в этом занятии, но я должен сказать о том, что такая возможность есть.
После того как длина ключа определена, вся шифрограмма выписывается в колонку. Ее ширина равна количеству символов в ключе. Затем надо сделать частотный анализ (который мы изучили на первой неделе) для каждого столбика этой колонки.
Давай потренируемся во всем этом на практике. Представь себе, что ты видишь такое послание:
ТИЪРУЫМТУНРШАТПЮАКЧЧЙАЙТГЗУШМНОЧЖАЧЗСЦСЮЙЗЗЫХШЮХАФЭБДЦПЯХИСЫУХЮЭАППЖХКТУИЩЩЖЗЭШУЗЭЫШНТБАЩЪБЗХЮЦПЗЭШПЙДБЕРЫБАЧ
1
Фридрих Вильгельм Касиски – Немецкий криптограф и археолог. В 1863 году опубликовал труд «Тайнопись и искусство дешифрования», в котором детально описал методы расшифровки текстов, зашифрованных шифрами многоалфавитной замены. При помощи этих методов был взломан шифр, который считался неприступным более четырехсот лет.