Самоучитель Adobe Premiere Pro. Елена КирьяноваЧитать онлайн книгу.
никакого отношения к звуку не имеют (они определяют частоту электрических колебаний в процессоре).
На самом деле, подавляющее большинство знакомых нам звуков не является колебаниями определенной частоты, а представляют собой смесь различных частот, или спектр. Однако некоторые частоты в спектре, чаще всего, доминируют, определяя наше общее впечатление от звука, который мы слышим (об этом можно судить и по приведенному на рис. 1.9 графику интенсивности звука).
Итак, звук является акустическими волнами, передаваемыми в воздухе, и его основными характеристиками являются частота и интенсивность, а полноценной записью звуковых волн может быть признан временной график интенсивности.
1.3.2. Частота дискретизации
Очевидно, что для записи звука на компьютере требуется представить в цифровом виде график зависимости интенсивности звука от времени. Для этого достаточно записать в аудиофайл последовательные значения интенсивности звука, измеренные через определенные (чаще всего, равные) промежутки времени (рис. 1.10). Чем чаще будет произведена такая запись, тем большая информация о звуке будет сохранена, и, соответственно, тем лучше и естественнее будет передан при помощи компьютера звук, однако тем большим по размеру получится звуковой файл.
Рис. 1.10. Цифровое представление звука связано с дискретизацией временной зависимости интенсивности
Итак, частотой дискретизации (rate) называется частота записи графика интенсивности, при помощи которой звук представляется в цифровом виде. Например, частота 5000 Гц означает, что каждая запись звука производится через временные интервалы 1 / 5000 = 0.0002 с.
Очевидно, что частота дискретизации для звуковых файлов имеет то же значение, что и разрешение для видеофайлов.
1.3.3. Глубина кодировки звука (формат)
Подобно действию рассмотренного нами ранее для видеофайлов параметра глубины пиксела, в аудиофайлах каждое текущее значение интенсивности звука может быть кодировано с использованием различного числа возможных градаций. Таким образом, глубина кодировки звука определяет количество битов информации, кодирующих интенсивность звуковой волны в каждый момент времени. Очевидно, что, чем больше количество записываемых в звуковой файл битов, тем с лучшей точностью и разрешением по интенсивности прописывается в цифровом виде звук, тем лучше и естественнее качество звучания.
Поясним сказанное на простом примере (рис. 1.11). Рассмотрим малый интервал времени, для которого имеется несколько измеренных значений интенсивности (для определенных отсчетов времени с равными промежутками). Эти значения интенсивности обозначены на рисунке крестиками. Если использовать высокую глубину кодировки, то при помощи достаточного числа бит информации можно записать в звуковой файл данные значения интенсивности с большой точностью (столбики на рис. 1.11, б). Однако, в целях уменьшения размера файла, глубина кодировки может быть уменьшена. Это означает, что имеющееся в распоряжении компьютера число бит информации