Эротические рассказы

О Шиллере и о многом другом. Николай МихайловскийЧитать онлайн книгу.

О Шиллере и о многом другом - Николай Михайловский


Скачать книгу
делами газеты до 1877 г.

      6

      Известный русский философ В. С. Соловьев в своих эстетических сочинениях обосновывал тезис Ф. М. Достоевского о том, что «красота спасет мир».

      7

      Пораженный странным оборотом подчеркнутой фразы, я заглянул в подлинник и, как и следовало ожидать, никакого «независимого положения» там не нашел. Сказано: dass das meinige sich in diesem Falle befande, то есть просто в таком положении. От независимости Шиллер чураться не стал бы и видел ее именно в полноте и ясности отношений между произведением и читателем или зрителем.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAMeAjoDAREAAhEBAxEB/8QAHQAAAwEAAwEBAQAAAAAAAAAAAAECAwUGBwQICf/EAGcQAAIBAwIEAwUEBgUHBQkHFQECEQADIRIxBAVBUQYiYQcTMnGBCJGh8BRCscHR4QkVI1LxFhczYnKC0iRWdZWzGCY0OENGc5KyNjdTY2RldHaUorQZJSc1RFRXhJPjR1WDhaSlwv/EABkBAQEBAQEBAAAAAAAAAAAAAAABAgMEBf/EACkRAQACAgICAgMBAAMAAwEAAAABEQIxEiEDUTJBE2FxIiMzQgQUkeH/2gAMAwEAAhEDEQA/AP2KTBJiZ7jrG1fVegpO8ETnB+lAASYkqPTqaAZ5QgCT0k0CgGFgkkAdooGSxYgtAMn50GXvGn4p+Q3q0FqDEeUfdtTQewDE/LH561AT5yABMwT3oGPNEnIwG6UEk6R5AYGxiZNUBGg6tz1PWlibzLI3GJkCKsLRAm5kHV1n6VUEhipjT+tG9SAFZcxAK7ZqiWIzsSd6Cg2k/hmoJgzqWQQJgGqJZwBIJA3otUGMmWK6SAMb1CyjWSBJH3RVRJEkEAqO5xHzopsFEkdN5mKEzYjQuAMic9f5UQEgQGmSJ9aNUzNzzK0EYyPWiyCSCNRYkmFztRCBIbOQMSB9aCo1AGYO5A60AYPWB0WcEfwoMxc0tAiI23pK1RCRJYBlJ3G29XYkOxSSCJxPY0kNZJhTAMmOp70nQbwhAGZIkjp60CmehAGfrUElRqLac+netQJJJU6QFY98kj1oJ+BQCBiNzEUFkSHJInfIoExEGUE4Pzqqz06ZIJgiCO1EKWUdT1AO4oEEVlXSdLAYJ/OaBuPKAQCZnaSaDNmEnB07zsKKRcFQTmTnH5xVpBqkgOwWTIJ/ZSQNqGvaRnfFSAg5YkqMkSR+cVoJ7hhRGlVySMGpS6SdUEafNsROfnVQmYBMDHwkbkR60BAUkwQomWOw7gUBcGcMquchTRaRg6j8JnJPehILkMAw+kbn+NVAWIgtE9zkfOoJkgSIOcYiTRaSurWB3zPWKKltOno5JnUR+YohKQX1b5/MUUyTcD4BBE7yfWKBtAHmBxGT1qiGZVaTkbk7QaBO0OgcLHaDtVgiAxNuMk4npmmxDO1xHAnYGB86kLAYEISSQ/8AeA2+laDF9wABewO4qUjvKt5SCGxjIryuQzsQDjoetAIS+Bv6bUAxAMDecHtQZ+9gicnaY2FAdZMncSeooESGODmZ2k1Q1OhVBiTvPT1qCN8SNO31qjTecgs35ioIBLCMk5zVDghxuSIyKCGbzBQY04LHoKUogTAIU5+laRIAzB3x6xQJgx0giADkznbrUFe78hJ0sNjG1LARBMHMT6GqJ1ZBnCiJH7aLSdZfI04EH0NBJdM/w60QySQogZG/agkAGDIHQdxRVnBjfJ260RLOoQyBIGFI+6i0lnYLqMqAMYyKKGKyVys5H8aCQwiASI6nvQUEBxG5wCcUVKAMNJMAbaaCHZUAMDGCQYn1oC42EmZ9Nz9KUWUy2o5AxgxP1oE4EFlBgHYkgk1QB4ADSAMYPWlWAsFzgFvN36bUoSSBcLCMYMA4q/SoL5YDYZBJNEUA2qSSdOJnegPKWBJkzlQf30CKiC0SC2y5n76CGGhGBkgnaihSIA/V+6qhMFBMkj0BnNAAFo+IgbDv6VAg8lhAAUatON6q0zNw6TDAZ2B2pACSIGoYEmelVDLBl8raR1g0oSx94Brz/s7igRZN22yZ/PSqtJ1yeoJwFBoIEzICt2k5FEVExgErkZ3NQKP7Iw5g7wN+tUTcfUYIMDE9/lRdJ0iJVSzrsrbkUQ7iACQQF6KaBKBpJJ0icSNu1AA6QARAj9YbUaQwCrlzJA3P5iiWRVbcKNSs2yztVPtOlUBBA+ZOJ7moUZMEiRqAA3gfdQSXFogT5TsY61aVOoEaColhJ1Zg1aAU0aoJ1SBO/wB1QR+voXzSep/CtKBMArOqYEjA+lSgEszGIYjA7z6UpEawunzsyk7fuqhe8b++T6x/Kg9AnpsBmfnXkci0gGYAg/MUBmTBBgzg5+6ggkmQZz2MkVRJJ0kHHYdCaBKJXSZ9TNBRWFgDNQUuosCFkjHYiggsZBgAT0G1UMKTdMLPzqCNAMYjfY9qozLl2bXmeh6VaFyNBLMVX5bj99UTAAIgEEYO9ALDNqA2OR++gYZiYMYG00BEEkzO0mghiZYBY9Yo1pLYXfbeN5oyCodQR5epX5+tBDLq09hRVmA2dszFEEYWRmNvSi0ljCkHoNjv9aFJ87EjCsO3SjRFipLkMrfy9aBkgpJbPcGYoIJCqAPhIxH7aAIChd9IA3zmiEXmcAAdgdvlVpQ0B1BEnoDuKgiRqgAkxmP3dqosD3syZGD6VBOoEnSYRp+VWAi4K+Uad5HerCkzDSAQPn6fOiJAChcllyJAoGyggDKhRt8qBtcCsYSY3M7VBmSNOljpkQBE/dVWiYEADUO+dqIzDTkg6VmV6VQ2GkQCW6HE0AXEDUIE6vpQI43lRnI2+dFJWGjoD0FElKkN5mWTM5NUUZWJCnvAiD/hUCB0uS3mUenpVkQVBWDsw3HU1V0gyyk7+h3NEGgQCGley7+tAktgFmGB2jFA2IAmIY4z0otED/aEKDMSMZWhJBxGgSQOpxNEJbbM5aSTBExEn+FBAZkCsIEZzRYgFiQF1GYM5jPyoukNqtOJUA9pOe1E2C5RjsxIGlu9VTZCFgtqPY4FERBYnSPITmAf29qilqYPqIUQegqisXE1FvUkiQKaNIMo0dNM4zJ9O1aCZhMBgFzEDFSIWEP+oXQTAnSM0DUaiqsQcE9ttqqFaK+7YmcZE9T++gzLsG1EDSQJAH3H/CooLuTMfiKFw78IKaVESMk15XEMytpUGemreKozXLSZO/pQM7ESQwiADAoECGbffEk0oNiAY2aImaAGlF39JG1AtMg7kb6qBNnB3B671dBMWY6QQYOW9PWlL0k5gfD6npVQyJgDURtPWgRI8wkEwcigFkkQxM9xGaAAAgHrQNp0AfiP2UWkO0ATgRmP21IP4gA4gSRuB271UBIBIIIMYXvNA5KmJk4iaAPnkGWk7DaKBMwCnJkmCCdqLCA7OxhPqKNFsWaAGH637KCVIY6gDgyZ6UFtBJAOrSJnegBOkj9Xr3PofWiJcshAUSQdz++iwln1ljqkwcL0oJRQTJGQe/5mgoAa+56NQIEkyVIIxHbr9aojWAwaPIcbdT1oJJW4oUxOxUbfhVUlDAEaiTsRO8f4VUAcaxKxvAFA5BYmR5R060CbyAgQczjJ/nQpLXACDJBOBPfvRSwYBlh8R6TNESMiSwnEGKCgwLArMZz271BBWCQTCgyI/hVhaTqJyVgzErj8Kpang+pB+Imn2hNchdJ39BFAm06ZU9NIgb1OxJuSg0rMmG7/AEq0tERnMBN4EiapaQ8EgiTsT2ohmVGplJY/jQJpBGkKI26TQS8sGBgN0A2HzoqUErJyCZJAzRCAztoPZhmKBBg5UEtoMYOMUCLQhiWg7H59KNEHY7AbYU9BQNgACmoSdgcnFGUFiQkFtQkScbUBIdwRHzjf1qtQjM7APsSf3UFEKw/ZNE+0hysgQkfr0VJVhgGB3iTQTMAkZzJI6j0qwIZhpBB0tGANp9KAb4l1GWO4JIj5mqKLNMBlMCQwzj8/xoqIW206YcYI1SaCUEMD5hJkRt+f40D0KcyR6QMUHfAdWro0V5HEHzEiB0wMZ9ao+Xj+LHL+B4ninVmSxZe6VUwWCqWx93Wkz0k9Okex32zct9tXKeP5hy3l/Gcut8FfWwycYUJYsmqRoJxFZxyjJnHOM9Pn8V+27lfhL2o8j8D8Ty7jeI47m/ufd8VaNsWU94zKNQJ1YKmYHak5xE0k5xE8XpJIQjEHvG1adC1eVVBBxMxFQSxKajgDYAjetUIMagSCRVDYw2DE7d/pQTOowTLDqOlBaDUCMkA7TmgksuxYaY6nY0CBAJMFhGBOKDhvG3ivh/BXhfj+e8VwnFcZw3A2/e3bXBW/eXSmxIWRgTJPQAnpWZnjFpM8YuXn/L/tNeC+cN4Y4fld/iea8w57cFtOXcvRbvEcIxH/AJZZEAHcjoCdhWecdMflxmnrAbMEYA+hPzro6PLPaT9oHkHsv8Y8s5BzjguNjjraXjxtnR7myjOU1OCdWCJMDasZZxjNOeXkjGal6eALgQhg6gagybEdCD++tujzPmP2huQ8B7WeE8AW+D4vjOaX71vhX4uyye4tXWWdLSdRKiJgda58ovi5845cXpS3PONIOR23ro7UTE5aTGCJ/hQJCSxBMkdaKEhZycmRQN1gGSBneiBCVY4gE4Hr++h/HknEfac8F8K/iXh+aXuJ5TxvI7jW34DmIFniOKImRaWTORGY3B2M1jnHbl+XGLeheFPENnxh4c5fzqzw3FcFY420L1uzxdv3d5VOxZZMSMj0INaieUW6Y5cotyrLKvBBA2j91VooIJGqMAk9qoEdVBJIxuIikhFlXI7bsJjrNWFRkKRGofDAFES2CMmRvMVQFtECC0gHP59agpVJEiA2/wDjVADJCgY22kCiwgxqEjbeTQtw/ivxHZ8IeH+Yc34nh+L4yxwNo8RdtcFZ95cKYkhZEgbnsAT0rMzxi2Mp4xcugcF9pbwdzVfDlvl17iOacw51eFpOXcDbW7xPDsf/AIRZwAeoJ6nas/kx6c/y4zT1dzAeTCltx1ro7Ie8ICjyhc7xNFS8aUMBM98VYRBViJMtOwOM/kUDKhwYaDsDHSgq4dDER5ugAmgj3g0DXPxfL1oqHuFtMZBOT/d7VUMNqkzKjdWGx/hQLSBBOwJGDgD0oG1wjCtoO2on9lRYhnBdiVOtBkFcEn+FCyYLexspz0q6RMBjpBm2TJ/n+NAMVtuYnPXfHWixAuf2gGw1CZoJZzq8u20EZ9DREOhIhSZ+Yz1zVaULwBBJnckRUSmd5mJ1MoOAcn9lFBUuuogsAdu1aoRIJAAlD0NBq4KgMTAA2maifbO6qrLErpUxBIMUpUwwQkSBMjOCN+lWlSWAeUEIe43zvVRQEGTgRgkz+FBJuXBgrmCQx/PapSoJy0BRA3MTFUSymyysJMnMx2og0MCPiXoZM9P20G6oSo+DbrvUtXdidS4JUbya8riaao0kDeqOM8SMB4c5v1J4K+Qf/wCm1SdJOpfh/wCzn9orkfsV8O815fzblnG8fc47ibfEI3C3LSBQtvTB1sDM9q4Y5cdvH484xfdxvtY5d7Y/tNeAuecs4TieC4e1xPCcK1vimRmLLcYkyhIjzCl8soWcozziXuVr2v8AiNvtS3PAXvODbw+LBuBTww98T+ii7/pJ/vHttiulzyp25T+Ti4ni/tLcRzz2+8k8G+Gn4W5yA8SeE43i3ti419wrE+6afKqkRI3M9Ipy/wBVCfk/3EQ35H7c+bL7efGfhznfGcHY8Kci4XieKFxeHAuotoWiCXnzfG2IyYFOc8phYzmc5idQ+32Ne1vxP445V4q8ceIP0bl3gjgvfHgeGtcKBedUlmJuTkKoC7Zdj0WmOczc/SYZzleU6dE8N+0P23e2XguZ+IvCD8q5NyPhbr2+H4G8ts3L5UajbUurF2AIkkosmBWeWU9wzGXky7xep/Z09sl32xeGeKbmXD2+E55yy8tji0tAqlwMJW4oOVmGBXoVrphlydfHnz28Y4P28+2LxHyjxZzzlA5Dc5F4dvOOJuX+GtpcRAWK6VLS50jpXPnk4c85uYesezrx5459onsG/r3lX9WXfGV6/dt2FvWha4YhLoXaYB0yZJ3G1biZnG/t2xnLLC42839oHjf25exvl/B+IOf888Pc05dc4lbD8DwiW2IYgsFYC2jAEKRqUmDWJyzjbnOfkw7l2728e3Pn3gblvgPj/Df6Lw9nnw99dXi+HF4hStllC5EYuEHvW88qqvtryZzERX2+X7Qvtq5f7Fr/APV3hDlfJrHizigbvEcQnL7I9zY6a9AUsz9ATgZPSs5ccNbM8ow+Mdve+T8S3Gcr4Pibmk3L3D27jlRAJZATj5mu0ad/q35O+1H4bHi329+FeRzofmPLV4a0wbC3We6Lc+mvTPpNcM+8nl8sXnEOW9lv2ibvhT2Kc94XnikeJfCgHBWOH4nD3dRKWgw722BVvRR3q451j21j5Kw73DzDwL4d47w/7d/Zq/Nmutznmt2zzbjDePm13nuss9joCk+rHtWMesocsIrOLfoTkXtc8Rcb9prmnga7c4Q8h4excuoBw4F4FbCOJuTtLHpXblPKnojOZz4/TjOB+0ff8WfaB5V4R8Ptw13wyblzh+I4lreq5xVxbbsWRp8qgqADGYJ6ipznlUEeS84xjR8w9tnif2c+3BPDHjO7wTeF+PBbgeYWuFFhltsfI7MDB0kFGHfNSMpjKpT8mWOdZOU9iftV8U+2Dxpz3mQHD8B4C4S61jhbf6KDxHEOR5Qbk9F87QMalWrjlOU/pcM8s5mfpxHifgvb+p5rx9rnfhjlfB8Mbt2zwqm3rvWlkqRqRxJUbFhvFZmfIzP5dn4I9vnPfFH2ffFHit14ZPEHJUdPeCzNm4wVGRyk9Q2QDEjptWoymcZlqPJM4TP3B8j9sHLX9hvDe0Lxpy/lHMeeC/f4fhZ5fZ95euLcK27aFlJWAJJBwATU/wAzjyyhmMonDnlHbnvYV7UOd+0P2Yc48Rc7fhm47huJ4oL7izoQLbtB1kSZyTk1vHKZiZlvx5zljMy8c4L2++2Tj/Z1xHjS3/UB8P8ADcQvDXLrcNbF33hKjFstqIl1zt91cvyZ7cfyeSuX09L8SfaB4/wh7BPDfivibPD8Z4j51ZCWregpZFzzFrhQfqqoGAckgV0nP/MTO3WfJMYRl9y6bz7x37b/AGa8g4Dxd4hu8o5jyXiLls3uWIiC5YDiVV9KgpO0hm0mAaxyzx7ljn5MY5S7T7bPb1zXwx4J8Gc/8KDhxZ59qb/ltn3sLoVgsSACGJB+VbzzmIiYb8nkmIicftwnMPbD7W/Zn4q8O8v8b8q5NxXCc4vrZtJy5lNxgXVTpKMYYawYYQaz+TKJ7hj8meMxyc77Zva74q4f2j8t9nvgSzwx59xAV73F8QqsLZYFgo1eVQEGpmM4iK1nnMTxxbzzyieOLl+V3/al4L8H+MOZeMOb8m5rd4HlrcTy27wdtW/tVVmPvBoQwIGCMyc0ic4ibWPyREzk6Pw/2luc8N7C08QceeE4jxXzHmN7gOAsWuH02zp0S5tg5gNG+SyipzmMbZ/LMYXO3Ne1v2l+PPZX7I/DnNeL4nl58U8ZxJXjUPBKbVgG0zi0FndYALTkz0q5ZZRjEmWeeOMTO3I+2z29H2aeD+UrwLWL/irmfC2r9q1cUMlhSgLXXWcySQo656Crlnxj9tZ+Thj+3Be1H25+K/BvgH2dc45be4JeN55YF3jHu8IHUnRbbyifLlzUyzmIifbGfknHHGfb7fb/AO2bgPY2U4Pwry3k9nxbxie9v37fAWgbFneX0qpZn6AnaSelZy44ajtfJlHj+MdvaeS8dd4/kvL+L4jSb9/hbV19IAEsgJgdpO1eiNPTE3D7AuoDVC6Ttpx8461RPxTuG2PcVoUFGoEsZGflUGZuZUwQJA7zVWgwIaVYA/FgbR3qJZMdQMZER86ozYeUEmWJkd46UFOWCEyII8s5xQopCtpLQp3UDHzouiWVC7nO87diaIFwAFwVMgH9tAA4kAasyg71BLMFBUHSo+ZB7g1VZ+8ltQXEEAHv60UwpYRJmY9BRmTbUZOrqYkZHegyNyGKtB806j/CjWz983mAaNUxQRGdKAAMRid+5qwLaywGpQCwB3Pmq2JDQwgQTklsx
Скачать книгу
Яндекс.Метрика