Эротические рассказы

Розничный магазин: с чего начать, как преуспеть. Анна БочароваЧитать онлайн книгу.

Розничный магазин: с чего начать, как преуспеть - Анна Бочарова


Скачать книгу
id="n_1">

      1

      Соседство торговой точки с конкурирующими магазинами, торгующими аналогичным товаром, – тема неоднозначная: с одной стороны, такое соседство «отъедает» часть объема продаж, с другой – притягивает дополнительный трафик покупателей за счет плотности расположения магазинов одного вида и расширения, таким образом, возможности выбора для клиентов, что увеличивает общий поток потенциальных покупателей. Влияние подобного расположения торговой точки на ее объем продаж необходимо учитывать в зависимости от вида товара, который в ней представлен.

iVBORw0KGgoAAAANSUhEUgAAAd8AAAENCAIAAADBlPgrAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR42u2d34tkx3XH858kkOfY5C3IToSN3pOQIAzCLyYPXsvxQ4wc47z4IRHYeXAgsoXBhoSVwQ8OK4hJIEMCMWax0IPXNpJXs7uSxjvenzOapZnZXQ8rnG844rhcp6r69u3b3fd2f74US2/PvXWr6p761KlTdW//zq8RQgiNT79DEyCEEHRGqKsePXp8enZ2cvLg7r37SgcHN99+511LP/3ZGx3T1bf2/SzL5+joWNkq0cIIOiM0R+fn58Kl0Hl4+Eth9I03r3bn75JJlxP3dWkNAyAbQWeEX/xYNLx1+85CjvB60rXrN4zXgvWTJ+9zsxB0Rlsu847X7BoPAmuNIhpL5OBzExF0RtvjIxuRBwFlGkQ+PPylxZFryRzzHqHqdgGU7Ww2w6dG0BlNTyKX+CV69vORDcGCoAirfORxD+i0qmy2JGgEXwbcOvHo6BiHGkFnNAEoa/p/cHBzIcaJ4LabYrOLcumy5LXrN3qEPjRLwAYQdEbj0qJQNtdYfvGYHU/BWq6x6tV9BiBM400j6Iw2L3mL3cMX5iBPdMuagKsRaKHK6nhi0wg6ow1EMLpM/6++tS+ibdkamsYkOchdqi+Uq/pEPBB0RutwIbv4j7axYeup1D3Obq409oOgMxpep2dnc/c27AiUe2Na7SOnm3AHgs5oGM0NYjB/TzE9N+ih5rp77z6MRtAZLcVluXtM2Hto7nqpDWns7kDQGQ3JZciyUMSjPcLdun0HPxpBZzRfp2dnDZroT8zK+7VqI2pPrANBZzRnMt4giLhMEGOQcEeD0UdHx7QSgs7otybgDWrA5WFluxIbrc07phF0Rv8v+Wu1xSu4vClGHxzcJKyPoPPuSj5abe8XXF4bo2u7pC0YTRNBZ7RzoYxbt+8AhfEMk7WIv4ZPAh3QGe2KZrNZLZShuTY7Bzalxt47dt1BZ7T9LnNtHi3fjYf9xnCDNHFhtRBB552bPhddM/nRhJhHpfPz81qgQ0407QOd0VapFmWWK82UeZzSkFkMQF27foNZDnRG2yD15OLGDGbK41ctEsVzK9AZba3/hcs8IdVWcVnChc5oqipGM9TP1dtpnMk50cVINFEO6Iym15mL0Qz1cLyt6ero6JhFXeiMJiw5U8WJMM+YbMfNLW68YS8HdEZjl9yoonvFAuA2TYyKS4WsJUBnNF4VA81EM7ZSxSjHtes3uNfQGY1OxReeMeHdYmk+FENY+oZ1QuiMRjTVLa4Bsli09To/P4+3nkAWdEbjRTMO1E4ZQDEMzdgMndEmVXwOUN/w4vZdUzGuBaChM9oYmmPYkXWhnVVxuw6Ahs5oFGjm0V4AHQHNGzmgM9o8mmkZhG1AZ0T3Q1OyEJ4Uhc4INKOR2gkxaOiMVqUnT96nyyEADZ3R6NAcN88xXUUAGjqj0aGZgAbqB2ieJITOaDDFN6+DZtQb0DxKCp3RMIqPgYFmtCig47P+PFAKndFSii+KPDi4SbOgRRUfVOGxUuiM6FFopObESA+dUc/ZaBYuBM1oScXfZ+AN4NAZLSZROPv5OFZy0CCKyxjssYPOaAHFTRrsgkJDDfzZ7kwGfuiMuuruvft4N2ilgM6CZpqoETSDzmiO5COzfw6tWnGPHSuE0Bkt5tRoEkqzoFUobtbkTdDQGVWVhZt5ZACtVHGFkAA0dEYFxXDzbDajWdBK52rZCiG7NqEzyhXjgGxEResxvCyYhuFBZ/Rbii4MbYLWoxiAZvsmdEYfKHuCi3AzWrMODm6ywQ46o1xxCx1L52jNipuFiG9AZ5THNN5+513aBK1fs9mM+AZ0Rr9Rtk+DmAbaoIhvQGf0gQRiYhpoPIrxDX64EjrvqLJnT4hpoI0rxjeYzEFnugHdAOE0IOg8gilk9vpmppBoJJKXkMU3eGYVOu+QssVAkZo2Qdgngs6j803YuoTGJuZ20HkXlb0YjLgeGqGyh6TkT7C7Djpvv+PMYiCahLLlQZ4ehM5YPEKjUHxvIp7EKOj88OHDvb29L7zwwu//7u+RSKNKf/6nf/byN17e32epauXKonD8iNrm6Swuf/Spp9QNnvqjpz71qb+68OnnSaTxpL/8i2cN0y+++KLcCDowgbhdofNL//yS7P6Zjz/z5S///Utf/yaJNML0tX96SX6DDPVPPvrRw8ND+jDu8/bTWRNGWfxzz32S/k8af5ID8Ycf+rAAjQe9OsWXb+A+b4DO+/v7QrOmjXR70oQAbSEOuvHqlD2cgvu8ATp/4YUXPvwHH9KckT5PmlCyEAfxDaLPW0vn4+NjmfiFTz9PbydNK331H78m033l4kV68tqizzw6uFY6X758WSb+Dy9+hd5Omlx65uPPfP5vPk9PXpv7zKODa6Xzq5cuic70c9IU03PPffKPP/IRevI63eeTkwe0ybTp/Mp3vnv9+o3T01O70p27d7///f/skY9OVEq/efPNn+ubH/zgh7VTvvdvr/7i5k0LkKkAP77yk8aRln+a9GXx4Ndee/299068Oo0CzE1+3filaldrT/3JC6APe3v/U8vfmiitiErbyFy3Jr1Zar3azYrNZSnmXKzj4OnCp5+X9dKTV6rszRu8uG7adBYLfPVA/dO6fT+cWSYZIPRNjbnCil1a/NKR9lnoqR0cGyWC6Vvf/teUy/65lu3c5NeNX9Zwpvo6l70ANUBbE6UVsdNrmasi2c2SiqNUzZJizsU6QueJKnsPAe9WnCqd5eU5E8U1/9I/r47OuoRd2kcCL0zRGWwDMYOX8nFgKX8rWL8hpwedVRFdy9vQaCtMD0Jn1Uug98zlO5sH3Z7TNMZI6LxlOjl5wNa6baCzsawGjpXS2aCZYcXAVPRzu9BZzCo6qstUswedI6wb7FuUzsXiyYkehM76YKkWMoLOk1D2ZAprg5Oks827lwnLRjqnHbvBBSOmDtBfPfmX/ehc8wGX8Q393I7ldCK/9trrafChTee0iebS2eLaHguaW7XudP6tCObpaSNcDp3HrFu37/Ar8pOncy162y8ZiSxIYngyfBS5YMjoGBjtSGddsXiM+9TL0LljOdNQvv611bbG1Q30ajoLKOlcGzIbmTs952a+KJ2FY31WM/qgolJB58kp21rH2uAk6WwQGcpFcnBkatBZIFiIkm06qyJmmqvwnX3Wb/yqFcbj6WnVGlfXVKP4TFcxcx2cxdC7VK1f3NkA3TgLOk9obfDRo8e0ycTobP22vaa0KMs06VaGYpPcrgYXbP7e/dJd6OzwysKmdq12cHaouLP9KY1xz/Xc1VAqoQV5VPJGZCP+aXV01n2EzluzNsgvSEyPzu7tdvdhe9C/2MN9raxj1LvjQpxdUXD0XQ3unPYDTT86p/67b7DreMW5dE7Rb3s2BqezN9qAhgGd16nsrXUEN6ZH57R7q8+b2zvgclCbC+ad2aVttc2OX4bOjhV7tkWX8C3V69nv7PsCzRe2Gtk3HTdCNOjskwPdJs98QDrbXUhNot/eSug8BmXPDc5mM9pkYnQ2HKShT30eahfHXC6kC1BOhOJKVPdNbPbkW1odFaA3ZXrsqEsf8NEH27zRffW1vWcjzdzG0QHpnN4FFXtANEPn9Us4ZuPz5OnsUFvRRtcuO4JttW3APEWWTVXHkTdsjbLMN1g16DwVpcENfaZBpkpnEgk6b3dwg50b0JlEgs5jDG6wcwM6k0jQeYzBDXZuQGcSCTqPRQcHN/k5K+hMIkHn0Sl7LIV3bkBnEgk6j0LZOzfkStMm0JlEgs6j0LXrN9hXt3I6y7hJJBKJtPEEnUkkEmkKdEYIITTGyAZCCCHojBBCCDojhBB0RgghBJ0RQgg6I4QQgs4IIYSgM0IIQWeEEELQGSGEoDNCCCHojBBC0BkhhBB0RgghBJ0RQgg6I4QQgs4IIQSdEUIIQWeEEILOCCGEtpfODx8+vHLlyquXLnk6PDyMh6XHXL58+fj4OB6jL/f39/f29uwwnRKz0uX2K/Ic2kozadRr7gF+OVXH61Wsu+dWK08tZ0lFnVvIqLQY7Rbrcliamz7rm+Lti1nV6lVrJT+xVuu5zdJu1exCxWLMLUP7gLR95lpj2oz2jfcRGX+tkT3bRvG62KQVtaNN6uA0z6zwNavQ92mvL7ZYvGLRSOIl7LAGSbJsvb7t21prronRWfVRo3/s6afjD4PLttJG+cSzz8ZjXrl4Mcvw7770pXiYvsyMuPFr5CpPlx8t90watZt7QO1yqmy8wR1/RN311a98xf6qsWpuIYuN1rHFuhyW5mb3SBVvjxm1qlmLpRmmkknUbMP08jdetgPU1Yt9st2qWQmLxfAyNBBv9qzCxB5h3cGKN9ca02YsHiAziET7zIULsZf1sMlidysaRrH/poWPVqFix/zVONGe4xWLRhIvYYcVTdEvHe+aUhHoumXR2qdKZ7W+W4nqo0bXXTQHWa3gJqVv3D78GG+7zL7te/2rY8yPMFtPM/Sen3rrluyv6Tfei+JhA9JZV7ECq4J2RRU7swCvrxfDQVNsWzdoNfLcQqbZehtmJFLBii3WPizmtlI6e//Rh+IBbjnFZlH7L0lnIcxzaNDZe3J2l+173f3MPGLLW00jnXUrVQvl4+aR1TQtYRwe0ouah9uwSWvMrHdkreeXs1pYhtEGsm8cDobjrNdngB6czjUzaPiFqT+0DXS2xlLrN4zYXYloRm7f6a2KN8CNw92ELmDNMowlHJbO6e30KhdNMC1JowzWOG7NjTBCzDYWqeEnzgVWzG11dLaBXL3aGrA4wUzdsdgsqYvXj87ucLTp7NfK2sF6uHf+RmVjMzYsJPWRzbW3C/kwMNcmi6Ut9o6s9WyQULOkLnzEYlYdK6SKl91EH3LSezcsnb0DFuns3l5j1jV5Ojtb2xbsN6kYb4oWVuz52Zcjp3OtFgvR2VpGjWxZNYIb20Rn67o+qyg6OO7uxWaxgdzx2o6MFytrPpe6bs1sYkVS2/Ye7pdeks7Fw4yzOsxAE4MbxYuaRfWgc9EC23T2mV+MPvk4kd7cYelsNS1OTC1PK0A2bNitN+OpzdsmQ2fvJO3DzIBqPdn9YrePYvTKjvHWHL/vbLc/M83udPYqq5O70ewCnd1ltrG/2Encl4zNYq6Az7vnLvlmxVBre8jYCdiO7GXmbTcrzXNwOluXMYfGABT7YPGiVqMMst3pnN3uNp0bt89vU/rXAenshucjZbzjxbHf73h3toyXzo1FiThZaFh5Zt/ZDVD+NpoV17gGobMO8CTbTX38HnRW57ErRp52p7MZt+UQ3bFitqkjsB46m4NpSeaetXAPOhtwrdPGITmrb/EAsyU1VD86m89lzd5lXpi6z2kPTzvFknT2AcDzNLQZka3FYnAj2qRXLZvCdqGzR7G7RzbsrzXXLdrGUHROHfN4Fb/jsd1szDPbmzydo8+7qANVa/HiIrJsq5htY19BdzrHNWXv8L33bMRusBCdrS+5m2PjUy240cWya5Utrgp2pHNMaW/sQefMo8kCuLG+2QGpN92Dzr52bWd1pHO6QyPt4YPQWcOML6y5OWUDQDG4UduzEW3STm/TOV3fU2urpr6+F+ncsK7GbHgoOqdx1AadY7vZiWZLk6dzOn1YBZ3dL/NFnmLPT91epUaYcm5kQ7dTZpetGHSns07MCqzPWWfoSOc0rJFFxBqzky509kJ6ymIv/SIbKoMvdndZG6gBK1sJLDqG3jhx+uyRei9hcctdsbIxGNqRzl4d3R3r4cUIwEJ0ttzckFJ3IQ1rpENa5qVmNplurJprkzWzlxHGjbP96BwnfIPQ2V1Gu+/RAn2lPbabz7q8MG2yjZrOXUIWaQM1nqcw06lFNqyXZtGP1cWds/0h/eLOvlyT9ZmOdE43XWa9K1qM5ZCBu3dkI4ZNu8edDY7OykXp7K5rOnjE6Fla39QF889mad0j41aMuL7Xnc7uPqc9fBk6OwRVTf017TvuG0bbiGGHok1mJelIZ4/I619Zte6Ir98Wq1NcgVx1ZCPb+hmvYgfbAJyO/dkaRvdbP/a4c/tBCe8ztfB0PKDYr7JlhJWuCqajRe89G07YtpNbLIP7oXMDEVkUcnk6F+vSkc5ZXRals6+wdwmY+LlOAWtwj4AV3dganf3WpFa6UBf1SEIWghtkVTCuXBVTOlFoj39xZSUL7tdsMnUCusSda/aWbQkfhM5x+3mNzn66R3Wy/T9GgGnTOfOV2q5x7T75pnG3mCV7/kjoHDMvztPjYU6KrMPEZe60u2ZT+N50LoZ610PnYvzUzCNttKwivnxqHcxPbzxCFrOyWndxKufOEePxA9LZJ3bZTNTKnw4MxYvGtaLaParZZNwXVKOzjwTF+IAdmRZ4eTrH3dxz6ezrHHZuhqBp09kr395U52NaDAL6dCnNYbO+8yCRjdSZynzD2vJmxqNIYS9YSm2PJmfdtR+d4/aAHpENd68WonNt70H0arPYi8+9dG56envPQNZ6jQc7O3bRIt8Hp3PRhNIu5mbQcT5nGcaydbHJuU+jGPJiaYsj2ZJ0Lj5gEi0wi7e41WXl7LJoMXY6p7NR1SfbBpTWrfj4pj+5n8ElPg/q/vWq484e4M4iUIvS2VcXjQ72KpLiEBXLYJ57cXkz7uGvRVd70Nl3oXVhfbxH/mIKr+BCdPbHB2pzL/9TxK4HgtIv2zPrrITFNuxOZ7fP4pONA9I5fX1HMTzof1rGJqPZF21yLp3dfdYV03cwRBouT+diu0ULtNNT58ND/JFX7YnXBOj86+R9MY5pr7Aba/o6DlvQSN+lkNm0ozxd8ajt2egSmZ1LZytSulzeb0edTszySVeoipsuMgOqhTXiBKLRAsV32TSOt1d8FcOXbTpbjdJ7lHbgjiWcuziRBTciFNwlbO/4btC5uBmmC51TS665WkPRuRg1rgU3lrHJzOxrNjmXzikcsl4f95t2NOa4d9ZrGh2aGp3T5jX/Mpu0bQ+drRVUyXS9Qp/1TXw7TGYo2aMffkfTrIpPOtgTH8UUO4ky1PeRd/7YiJdHxp2dbnm2q69TUkJZHDPNR+XXN8XKekW8B9rptbCjHayGNaLFHXJxw8PcFrOWsbX4IhfsxqXWn94jK4O+yW5344pZ8bJGiI5hWk4rTLxNWaNZnrW33GUlLNY6vWh7YdxegNUwj1pJzDIzr6120UY+bjlpOD61yWjbdumiTWZmbw9eFl+SkxU+VsfgkK5yqyTFYaxtKmnK1rGsGHGnYNGuIgpUPH2TgbhoY1OlM9qI5vqG69xU36/8Yy4eGqc6rm9PRdAZOkNnBJ2hMxoTndf2qi3ojNYji+lBZzR2J6IdFV3nD/D00KuXLrUfZUKoZjnrCQpDZ4QQ2lFBZ4QQgs4IIYSgM0IIQWeEEELQGSGEoDNCCCHojBBCCDojhBB0RgghBJ0RQgg6I4QQgs4IIQSdEUIIbY7Oi/5sF4lEIpFWlKAziUQijZ7OaEmdn5//9GdveLp1+w5tsk7ZTy/TDmjqyn6IFjoPozfevOp0vnb9Bg0CnRGCzqPQwcHN1H2mQaAzQtB5FLp7735K59OzM9oEOiMEnTcv4Tils2BNm0BnhKDzKJTS+e133qVBoDNC0HkUEpEJPUNnhKDz6JSFnmezGW0yXTr/6LXX//37//HeeyfZN0q/+tV5PP769Rv/tfff3/vepZe+/k0d8+Mf/6R4WJrV9WRvzxtv/twyPz09XbSoysfOjUkXatfuzp27KvYr3/mukj7ov+1r+fHf+va/KIdf/OJmI381Qva9lap2lupuJ6oN1ZK6UNr+8UbEVDw+zTy9QYs2ZszcDq41MnQekbLQM7ueJ01nY4TTSvTUf5Wul7ZLqt/aX9X5rf8bAtqZOyCUZyPzuVI+dnpMtTIIfPrr//7gh/GURhm8nGk1i8dbc4ng6ZeCsp1SG95iYYoct9YrptroohukwugAjSt+erFxGo0ZM7eDGzcaOo9I6a7nq2/t0yDbQecu9BSPHDoO65orl9JZl1gGzTVGtMHhDBJkzVvXvwZcUazov+tL+6tDypslH
Скачать книгу
Яндекс.Метрика