Эротические рассказы

Как убедить, что ты прав. Ричард ШеллЧитать онлайн книгу.

Как убедить, что ты прав - Ричард Шелл


Скачать книгу
С. Сделано в Америке: Как я создал Wal-Mart. – М.: Альпина Паблишер, 2012.

      9

      Группа элитных американских университетов, куда входят Принстон, Йель, Гарвард и др.

      10

      Гладуэлл М. Сила мгновенных решений: Интуиция как навык. – М.: Альпина Паблишер, 2012.

      11

      Желтый и фиолетовый – корпоративные цвета компании Yahoo. – Прим. пер.

      12

      Нобелевская премия по экономике (1978).

      13

      16-й президент США (1861–1865), первый президент страны от Республиканской партии.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAMCAgMCAgMDAgMDAwMDBAcFBAQEBAkGBwUHCgkLCwoJCgoMDREODAwQDAoKDhQPEBESExMTCw4UFhQSFhESExL/2wBDAQMDAwQEBAgFBQgSDAoMEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhL/wAARCANXAjoDAREAAhEBAxEB/8QAHgABAAEEAwEBAAAAAAAAAAAAAAECBAYHBQgJAwr/xABrEAABAwMBBAYEBQkOEA0EAgMBAAIDBAURBgcSITEIEzJBUXEJFCJhFXKBkdEWGSNCUpWhs9IYMzhTVVZXYnWSk7Gy0xckJSc0NjdDVHN0doKFlMEmNURFRmNlZoOWo/DxR2S04cLiKISi/8QAHQEBAAIDAQEBAQAAAAAAAAAAAAECBAUGAwcICf/EAEURAAIBAwIEAwQIBAUDBAEFAQABAgMEEQUhEhMxUQYiQRVSYXEUIzIzNIGRoUKxwdEHFlPh8AgkYjVDsvEmFzdVcpJj/9oADAMBAAIRAxEAPwDojJ+eO4ntL6vwU+x885kingVPBT7DmSGG+9MQHMkMN96YgOZIYb70xAcyRIwE4IMjmSI4e9OGA45DgnDDsTxy7jDfemIDmSGG+9MQHMkMAcspww7EcyQ4HmnBDsOZIYHvTgp9ieZIcByTgh2I5kgnBDsTxyGB704YDmSGB71HLh2HMkFPBDsRzJDgU4IdhzJDDfenBDsTxyHAeKcEOw5khw96cEOxHMkE4IdhzJBOCHYcyQwPenDAnmSGB71HLh2HMkPNTwQ7EcyQwPenDBehPMkMpwwfoRzJBRwQ7E8yQTgh2HMkFPBDsOZIJwQ7DmSCcEOxHMkE4IdhzGM4UcEOw4wDnnlOCHYhzfoD7lPBDsSpyCcEOw5kgnBDsTxyCcEOw45DgnBDsRzJDDfenBDsTzJDDfemIDmSGAOScMOw5kgnBDsOZIJwQ7Djl3CcEOxHMkE4IdieZInh4JiHYjjkR5qOCHYnmSGAOSngh2I5khgHmnDAcyQw33piBPMkMN96YgOZIYb704IdhzJDDfeo5cOw5khhvvU4gOZIYA5ZThgOZIkHjzKjgh2HMkSSE4IdhzJEcFPBDsRzJEJwQ7DmSHDvynBAcyQTgh2J45BOCHYcyQ4FOCHYcyQwByyE4IdiOZIfKU4IdhzJEtTgh2HMkHY/AnBDsOZIvGdhvkO5OGHYcci1k7b/AIylHmUKwCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIB3HyQF8zsN8ghOC0k7b/jKqIKFYBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEA7j5IC+j7DfIIXLSTtv+MqooUKwCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIB3HyQF9H2G+QQuWknbf8ZVRQoVgEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQDuPkgL6PsN8ghctJO2/wCMqooUKwCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIB3HyQF9H2G+QQuWknbf8AGVUUKFYBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEA7j5IC+j7DfIIXLSTtv+MqooUKwCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIB3HyQF9H2G+QQuWknbf8ZVRQoVgEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBQApAwgGEAQBAMIAgCAKAMKQFAGFICAYQDCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgHcfJAX0fYb5BC5aSdt/xlVFChWAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQADKbA5rTOjr7rWslpNH2a53urhj6ySCggMr2M8SB3LwrVqVNZnJIyKFtUrPET66n0BqbRRi+q/T15sfXHEZr6N0LXnwDjwz8qUrqlW2pyTL1bOtTWZLY4Hjwzw+Veqa6GNwlR4Kc7ZGCkg8fcmV0GCAMnv+ZBwggg8A5MonhRPDHlzQph5J3Pk80yupON8HI2nTV2vtLcKmxWytuFPaYhNXS08W+2ljJwHPPcOBXlVrQptKT69DIhazqRco+gj03dptPy3+K210lkgqBTyXIRHqGTEZDC77rHcnNp8fA/tdiPo83T48bE3HTV2tFpt10udsrqW23YONBVzRFsVUG8Hbju/CRr05ScI9URK3nGCm+jON5cO9euTxw+o3TjiCfEhE0MIjgDg5B96ZQ4SrHDPcpIKXICEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEA7j5IC+j7DfIIXLSTtv8AjKqKFCsAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgJH/AMKAup209HVDV1GtNpcdpuENorH6MnEFdLL1baZ/HdkLvtQDxyue19fVQ+Z0WicSzg5vXWtBoDou630pto2qWLavqrUYjOnaC3TmuNre0DM7p3NGOWcDxWPQpyr30Z0afBFdTPr1acabU3lssB0MbHeddbPoLfW1dn0dWaUpL3rG71c2fV3y7uI4SRwe9xAaOOM5Xs9XqRp1X1km8fIxVp9FzTztsRqnolaVp7/0hLRpKmvddcdmtHDPpuhgqOtmk3gC7faBmQcTyU09UqcNCU9lLOS87Ck1NLqYPtA6PNu0Ds22JXe52TVTdQa9rHx361Nbu1MjATiOnjI9iQtxjPmVkUb+dStWjxJRitmeM7BRpx8u5s3XfRD01Psb1zqK0aI1hs4vOiqAXCn+Gb3T3FlxiHajkZHxikxx8AsO21asrinCU1JS26GTVsKc6T23Ri1y2YbDtmOiNlF52k2nXF6rdotsbJVR265Rww0XtNa6cbwySC4YYOGFf6TfVZ1ODCUTzja20Ix4jh6vor0dq6Ylr2UGqrLppqvc2vdWNxHP8HGJ0hLzyDgG4yshajKVg6zXm6GN7Ph9KWOhHSP2P7N9KbIdHa42OUmoqSn1Hf662yMvFcyoL2U+Rvs3RgBxGR3qNOu7qdadKrjZL+pOoW1JUOOPU5DoeDGyjpF4/WhTgeXWPVdW/E0PmTpm9tPJGmmn62rqnAJztBp//wAcKasU9WTfu/yLL8G/mjJtoGiaraT0e+ilpW2yiCov9RW0rZX8RGC8Fzsd+G5K8aNxGhdXE2umD0dBVqFOL7mT606D2l4rJre12DTer9P3LR9vfPbtV3W700tJfZIx9kb6u070YJzu96xaesVoyg5NNPsj2q6fR4XHsar6OuxbZzqjZXR6r2x0OpKuXUOsotPWaG017KbGWt33u3gd4NceOFsNSva8a/LoNYSz/wA7GLZ2FJU25HysnRx05demvedlgdcjpGyXGqFQ4T/ZxSwxB5O/jgck8VeV/VenqtnzPH6spG0pu6lF9EWXSB2V7NrDsY0Hr3Y5Rait9Pqy5VlM+G8V7Kl+5C9zQ4FoA4lueHio026uJ15062NkuhGoW1GNLjiddyt2c+QpAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEA7j5IC+j7DfIIXLSTtv+MqooUKwCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAkc+KA2lsH20s2LzavfLaZLt9VWn5rSAydsfq5kBHWHPMDPJa29s3cODX8LybWwu1RUsmp207WUZgAaPse4XNGO7GVsN/Qw3Xbq8TOym0zpl3bXmltnembdaHWixaLFDJcIW1DXPu8tMWFm8RyYNzgD3laSjo8acpyb3ecfmbirqyaisGFbS+kRfdV7b9RbR9C1V10dWX6UER01WDIxmMbrnDg4LMt9PhC2hSqLOO5h19Qk6rlTZmEnTHvksGyCrraGa6X7ZbXy1s1dcqoS/CpkyCPFpwefcsV6PTTqxi8KX6GWtVWI5ic3qHpd6RbYdptFozZ9eaCfada5orlXXDUHrToah5ySxnZEQ48Bx5LypaRVjKnOVTPC/Reh6y1anlxi+pnu1HWWz/SGx/o8y7VtB3DVklNp51VbZqS5CkLJWOaerla4YfGTgnyWHQt7mrcVoU5YWTKq1qdOnGUkXuiekXp+bZjtN2y6/sFLddXaku8WnY7dR3JlNUUlqdGMMhJ9oAbvtOA4qtbTpO4hQg3hLL7ZFK8punKo9jHNYa72dbXOhlqGh07pg6Qn2Z3SB+n6GqvLaiWV9U77M8DgXDAPcvaja3FvqEeJ5znP5HlVuKVa0Zpro5bebTsWpNb2/VWl5tU2vWtuhoaqmirhS7jGOc4nJ8d5bTULGVxwShLhaNdY38KEXGXqbHpelVskpNl1Xs8g2LXEaUrbky5TUo1I3edUNbuh29jIGO5Yb0y6dbm83czVqlvwcLX7GNbTOlZRXyh2YUeybSk+jYtltXLU22Oe4CqEheQd0kcccDnzWRbaa0qnNqbzW+x4V9Rg+Hg6H22idIbZltGF2vdw2c6qodZXthfVvpdUubbhO4AOkbDz44zheVvp93RnGEKi4V8D1qajSnF56nFaq6SNtqanZjbdBaUfp7R2zarZXx2s1TXzXCsJBmme8cBvEcF6UNMn9bOdTMpo8nqkeOKX2UctWdLK3Q3vanqvTWkH0euto1XO2C8T1rXttVDK0NdE1g5v4H2hw4qq0qb5cJTzCONvkS9TguN43ZrzVm2KPUmwfQOzmK1SUztFVNRMa90wc2pEhJwGjiMZ71lUbPguZ1fR9DFub9VaKjjc1kVsDUhSAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIB3HyQF9H2G+QQuWknbf8AGVUUKFYBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQAcUBO6obByundK3rV9xNv0naLle60Rl5p7fTunkDO9263uXlVqxow4pvCMihbzrbR6lm61VouXweaOqNeJzTmlMR60Sg7vV7nPezwwrKceHizt1I5MuPl43LvUelL1o2vbQ6us9zsdcWb7aavp3QSFp5ODT3e9Vp1I1Y8UGmWrUJ0XhnF8DzyPBekm08PqY+HnYkZd48uIA5KMjdEc+HDB5qXlLJeOzyy8r71cLpTUcFyrayrht8fV0cU0xe2Bh5tYDwA5cFEYU4ym0sZPWVac0lJ7FnucSQ05HHkpeE0jy4njhzsfWkoZrjWQU1BBNU1dRI2OCCJpe+V55NDRzJ7lSTSTkz0pqT8sfUvdRaYvOkbg6g1barhZa8RiQ01wgdDIGO5O3TxwcH5lFOtCpHMHlFq1CdGXDIuLnonUVkstFeL3YLvb7Tccep11TSOjhqc8txx4HhxUQuKU5yhGWWiattWhBTfQ4XHu+Zeqy2YrWWSPf3fgRthpjBJPngpw9ieEgjzzzTiTeEQicZHNSm+hHqQRhSCEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEA7j5IC+j7DfIIXLSTtv+MqooUKwCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgHJASXIDtV6OG51Fk22aiuNvaHVNBo6vqIgeTnMaXAHzwtD4gi6lsl8Ub7RnieTY79E2KbpMR7cXRRfULJpI69dhg6v1wREdVjkD14PBYPOl9Ddr/ABcWPyNi6MFX52Di+mBQDaf0pdnEOpbHe78b9pOimqrVYuFTO57A8sjPIDJwSeACtpsuRZzcHwtPGX0weV1CNWtHiXXBjnSB6J9o0VsKrNodn0tqbQFwsl1go6uy3m4srm1kUrwwSRvaTuuG8OC9rHVKjueU8Sysi40+jOKcVhnL6m2CbB9CbW9J7OtR0utZ7nrihonQ3SKtAhtc1S0BhDc5flx4g8khfX9ShKtDGER9GtYS5bW5hdL0UKan0Ntmjm+ELtrPQOo6Cz2JlK/dZWOqJQwZYOZII8l7y1RupRb2jJZZ4vTFwyj67HPbUuhXatH6T2VWzTV6+Edca01K2yXqobOH01LMWFz2NaOGWYwfeF42uszqVqk57RS2L1dMoxjFJl3QbA9iesdqV22M6RGr6bW9tpqiOl1NPVB1NVVsEZkfGYe5uAeKj6bewoK6m1wv0PR2drxclLc677HaGa1bf9E0VZhs9Dqynp5d08A5kpBx82VtruUZ2kppbNf0NXa01TunBndTpibOX9JfW+n6/T0JbeNO61do2+iMZIpJAKiGVwHcGiQZPiuc0yt9EoyjL1jxL+RvLqgrhrK6Mnpe6t07qnYXoSO5UpOitP7QX2NjaJ+459HTRCJz2nuO8HFTp0KkLmTX2pR4hc8DpqMunQ1BD0Q7Bb9v2qrdqGrrXbK9OaabqZlxjm+yTUcrMwRh/wB1vhwz7lme1pytIpfeZwYfsyMajfoY7ZtlOzDQOxqx7S9sVHqO8x68uVSzTGn7VV9SYaOJ2BJNJ3uxg8VkO6vK1d0KOzitw7W1oQc57lGjNkuzSg2WX3a7tKg1JU6Qm1BLatK6eo6kMqZ93G8Z5RywThRUurmdeNpTa4sbsilbW0aTrvocdse2d6P2r7SNSRaT2da81XYaenZLbbRR3FsT6Q/b+s1DiBjPZ48Ve8uLijSgp1EpPrseVtSo1ZtqLwXnS56Odr2HxaNvGmqS82ak1fRySTWK7Ttmnts7DhzOsaSHDwOVOkahO5c4z/hKapawglKJ11PyLcGiIUgIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAdx8kBfR9hvkELlpJ23/GVUUKFYBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEBtbo37b4tg2srtfKq1S3dtzsVTbGxRziIsdM0tDycHgM8lgX1m7mMYp4w0/0NjZ3caLe3ocmzpMXdvRak2NClIidcC8XPfy4UZfv+rYxnG8fHC8fZsHd/SX+nx7mU9W+o4MbmeSdNjqdvemtoVHpdwo7RpZmnq63vqvbqIuqEb3xyADcdwyFjPRpO3nS4uryWjqyU08dEkY7rfpGaOqNiWqtm2zXRFyslv1Fdqa4m4XC8vrJ3SMlDnb+93HGABhWt9KnSrRquWcJoyXqkKklHHVnYDpMbVNnmyzbXo6/ao2fVWo9X2DStuq7NWi6OipnP6v7H18XJ247iCtfY2le4t58NTEW3t+Z7XN3SpVMtZNJ7MOm7f8AZxZdp8zbZFX6u2h17a6C6ucOqt0wDhvtjI4lod7JzwIC2NfR41uXFPCitzCp6w1Kba6mJP6Stxp9mGz7T9ppaiPUWg9USahZe5p9/wBamdngW4zxJOTley0yPNnJvZrGx5PVU4JcO+TYf5r7Q9q1Tddo+kdl7rftWvFHJA+5SXNz6CnnkZuSVEcHc4jPzrD9kV3TVCVTME+nqZMtVpPz8O5100Xqx+mNodk1TXxurpLVd47jPHvhpnc1++4Z7iSVuatJypOmu2DVUbrhrcxo3/pbpwXHR203azqiy2aVtHtKpv6XoX1IJt1U1payfOOJDXOHDHMLUz0RTpUot7x6/I2UdYSctuprXUu2+PUXRz07szntkwqbHfaq7VFzdOCKgzZJaGYyDxPHKzKVi6dz
Скачать книгу
Яндекс.Метрика