Эротические рассказы

(Не)совершенная случайность. Как случай управляет нашей жизнью. Леонард МлодиновЧитать онлайн книгу.

(Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов


Скачать книгу
двое людей, сделавших так много для нашего просвещения, – Дэниэл Канеман и Амос Тверский[28]. Не робейте, присоединяйтесь – узнаете кое-что о своей собственной вероятностной интуиции.

      Представьте себе женщину по имени Линда: ей тридцать один год, она не замужем, ей свойственна прямота и исключительный ум. В колледже она в качестве основного предмета изучала философию. В студенческие годы Линда активно выступала против дискриминации и социальной несправедливости, участвовала в демонстрациях против использования ядерной энергии. Все это Тверский и Канеман рассказали группе из восьмидесяти восьми человек и попросили их оценить следующие утверждения по шкале из восьми баллов: 1 балл – наиболее вероятное утверждение, 8 баллов – наименее вероятное. Вот результаты, от наиболее до наименее вероятных (табл. 1).

      На первый взгляд может показаться, что ничего необычного в таких результатах нет: по описанию Линда скорее походила на активную феминистку, чем на банковского служащего или страхового агента. Однако обратим внимание на три возможности и их средние баллы, данные ниже в порядке от наиболее до наименее вероятного. 85 % опрашиваемых оценили эти три возможности следующим образом (табл. 2).

      Таблица 1

      Если вы не видите ничего необычного, значит, Канеману и Тверскому удалось провести вас, потому как если вероятность того, что Линда работает в банке и принимает активное участие в феминистском движении, больше, чем вероятность того, что Линда работает в банке, нарушается наш первый закон вероятностей, один из основных: «Вероятность того, что произойдут оба события, не может быть выше вероятности того, что каждое из событий произойдет по отдельности». Почему нет? Простая арифметика: вероятность того, что событие А произойдет = вероятности того, что события А и В произойдут + вероятность того, что событие А произойдет, а событие В не произойдет.

      Для Канемана и Тверского результаты неожиданными не стали – они снабдили опрашиваемых большим количеством возможных вариантов, и связь между тремя сценариями, расположенными в случайном порядке, можно было и выпустить из виду. Канеман и Тверский дали описание Линды еще одной группе, но на этот раз утверждений было только три:

      ♦ Линда принимает активное участие в феминистском движении.

      ♦ Линда работает в банке и принимает активное участие в феминистском движении.

      ♦ Линда работает в банке.

      К их удивлению, 87 % опрошенных также выстроили утверждения следующим образом: вероятность того, что Линда работает в банке и принимает активное участие в феминистском движении, оказалась выше вероятности того, что Линда работает в банке. Исследователи решили пойти еще дальше: они прямо попросили группу из тридцати шести совсем неглупых выпускников подумать над ответами, при этом держа в уме наш первый закон вероятностей. Но даже после подсказки двое выпускников продолжали настаивать


Скачать книгу

<p>28</p>

Daniel Kahneman, Paul Slovic, and Amos Tversky, eds., Judgment under Uncertainty: Heuristics and Biases (Cambridge: Cambridge University Press, 1982), pp. 90–98.

Яндекс.Метрика