Эротические рассказы

(Не)совершенная случайность. Как случай управляет нашей жизнью. Леонард МлодиновЧитать онлайн книгу.

(Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов


Скачать книгу
соответствующие шансы с каждым возможным исходом, то есть произвести точный подсчет. Однако пока что рассмотрим примеры, в которых все исходы в одинаковой степени вероятны – именно их и анализировал в своей работе Кардано.

      Эффективность правила Кардано неразрывно связана с некоторыми тонкостями. Одна из них заключается в значении термина «исходы». Уже в XVIII в. известный французский математик Жан Лерон Д’Аламбер, автор ряда работ в области теории вероятностей, допустил неверное употребление этого понятия, когда анализировал процесс подбрасывания двух монет[67]. Число орлов, которые выпадают при этом, может равняться 0, 1 или 2. Поскольку получается три исхода, Д’Аламбер решил, что шансы каждого равны 1 из 3. Однако он ошибся.

      Одним из серьезнейших недостатков работы Кардано было то, что он не предпринял систематического анализа разных способов, путем которых ряд исходов, таких как подбрасывание монет, могут произойти. Как мы увидим в следующей главе, этого анализа не сделал никто вплоть до следующего столетия. В то время как такие события, как подбрасывания двух монет, не отличаются сложностью и к ним вполне применимы методы Кардано. Ключевым моментом является понимание того, что возможные исходы подбрасывания монет – это данные, описывающие то, как монеты падают, а не общее количество орлов, вычисленное исходя из этих данных, как заключает Д’Аламбер. Другими словами, нам следует рассматривать не 0, 1 или 2 орла в качестве возможных исходов, а скорее последовательности: (орел, орел), (орел, решка), (решка, орел) и (решка, решка). Эти 4 возможных комбинации и составляют пространство элементарных событий.

      Далее, если следовать трактату Кардано, следует рассортировать исходы, отметив число орлов, полученное в каждом исходе. Только 1 из 4 исходов – (орел, орел) – дает 2 орла. Таким образом, только исход (решка, решка) дает 0 орлов. Если нам нужен 1 орел, то 2 из всех исходов будут благоприятными: (орел, решка) и (решка, орел). Итак, метод Кардано доказывает ошибочность утверждений Д’Аламбера: шансы равны 25 % для 0 или 2 орлов, но 50 % для 1 орла. Поставь Кардано свои наличные на 1 орла как 2 к 1, он бы проиграл только в половине случаев, но утроил бы свою сумму в другой половине. Неплохая возможность для парня того времени, пытающегося наскрести на учебу, впрочем, как и в наше время, если бы только представилась такая возможность.

      Подобная задача часто встречается в рамках курса по элементарной вероятности, и речь в ней о двух дочерях, причем задача похожа на ту, которую я уже упоминал в связи с колонкой «Спросите Мэрилин». Предположим, будущая мать носит близнецов и хочет знать, какова вероятность того, что родятся две девочки, мальчик и девочка и так далее. В таком случае пространство элементарных событий состоит из всех возможных комбинаций полов детей согласно очередности их рождения: (девочка, девочка), (девочка, мальчик), (мальчик, девочка) и (мальчик, мальчик). Все то же самое, как и в случае с задачей о подбрасывании монет, только названия меняются: вместо орла у нас «девочка», вместо решки


Скачать книгу

<p>67</p>

Lorraine J. Daston, Classical Probability in the Enlightenment (Princeton, N.J.: Princeton University Press, 1998), p. 97.

Яндекс.Метрика