Эротические рассказы

Мастерство учителя. Проверенные методики выдающихся преподавателей. Дуг ЛемовЧитать онлайн книгу.

Мастерство учителя. Проверенные методики выдающихся преподавателей - Дуг Лемов


Скачать книгу
Американские студенческие баскетбольные команды чаще всего входят в данную ассоциацию. Прим. ред.

      6

      В США нет единой системы школьных экзаменов. Эта деятельность регламентируется на уровне штатов. Прим. пер.

      7

      Данное оригинальное исследование провели в 60-х годах ХХ века американские ученые-психологи Роберт Розенталь и Ленора Якобсон на базе начальной школы, расположенной в одном из рабочих районов Сан-Франциско. Результатом их работы стала книга «Пигмалион в школьном классе», которая увидела свет 2 апреля 1968 года и заставила критически переосмыслить многие представления в области педагогики и психологии. Прим. ред.

iVBORw0KGgoAAAANSUhEUgAAAiAAAAEdCAIAAAC650ulAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAZLlJREFUeNrsnQdgFMfVx3W3V3RN0qmf2qkXhHpHAiGB6L0bsA3uThx3O/mcfF+cxInj3m1MMb1Xg+kdSSDUe+/91E/S9fa9u4XzWRYYbCxAej8rZHduts3OvP97M7s7lMaGhm1btqrU6rf/+Q+zm/xw7FhTY6NKpeZyOY+vXUsQhFqt3rVjp1QmHejv9w8ImDtvHqTs3L5jYGBAqVQ+9czTFhYWsOHWzVumTktxdnY2QxAEQcY21Lq6upCwUIlk0JiUlppaWlLy/B//+OLLL4F+nDxxAhJ379xF0Ijnnn/+5VdfvZqWXltbm5ebq9PpXnjxT+4e7hfOnYc8uTk5bDYL1QVBEATRC8ykxMQJ8fFUCtWYdPHChbnz55PLc+bNy8rMUigUxUVFCxcughQ6nT45OelqWlpLc4uXtxek+Pr6ikQirVablppm3BBBEAQZ49Dgf6AfxnWZTCaXy92FQnIVwhGdVltdVWXF57M5bDLR28enuKjYwtJSqVDCqlQqtbaxvpqeHhYeVldb29XVlTBxIoVCuf2B1Wq1RCIhs8G/5ubmVCoV7weCIMgoQKfTUahU2pBUuUwOesNi39ASsPtqjVok6qBSfxQMDpvT09MdFrZs+7btAidB5vXMyKjIyopKL2/v9LR0CwuLLZs3r33iidsfPj8v/5uvviJoBKiLTCqzsbVLSpmq1Wh1Orw1CIIgDzEQOKg1Gjtb26ECQ2fQmUymRqMhCAJWVSoVnc4AzTANL0CBINHVzW3O3LkZ166lTJtWWJAfHhF+/ty5tU8+CZn//c9/9fT0WFtb3+YMQkJDPv7sU4qB1tbWf/797aiICEjXarV4exAEQR5eCCpVPDBQU1M7VGDYbDaNoHV0dAgEAljt7OwkCKq3j/eRw4eMqtPU1GRnZwcLwSHB8NfY0DAwMDA+KOjo90dZLJZ+Jxy2WCy+vcDQ6XRLS0tymW9lBaESjUZDgUEQBBkFAgNiQf15FxkkeXh6pl6+smzFclhNT0318vKysrKCsKawoCAsPBwSM65ejZ+YQObX6XQnjh+fv3ChISyiqJQQ8dCVSqWtre2dn41GoyV3ZfwXQRAEeUjRGTAjB/lhSa1WG39bvHTJZ598cuTQYYJGVFfX/OmlFyHx0cce/27jxu7u7va2Ni6PGxMbS2ZOS021s7cnw52IyIgd27dDcCMUuvN4PCxlBEGQsQwF1EWlUoFsuLq5GVPlcnnGtWs0Gj06JprBYJCJoC4FeflWfKtww2AJSUFBgbe3N4fDIVezMjNh2zt5isyUtta2v7311rvvv2+GXWQIgiAPOQSV2tfff2MMhk6nm6qLmeHhsclJSUO2sbGxSZ46ZUhiSEiI6WpUdDQWLoIgCALgqycIgiAICgyCIAiCAoMgCIKgwCAIgiAICgyCIAiCAoMgCIKgwCAIgiAICgyCIAiCAoMgCIKgwCAIgiAICgyCIAiCAoMgCIKgwPwEuVyelpqWeuWKUqk0Jvb19V26eDEvN9eY0iESnT1zpqOjw5jS1Ng4MDCAJYsgCIICMwwtLS2ff/rp4OCASCT6zzv/FovFkFhXV7d+3Tq5TH79+vVvv1kHKW1tbdu2bFWr1N9+801XVxekgLQcOXyEZpj4EkEQBBnL0IZN3b1zV8q0aeT8lcDhg4fWPLF225Yty5YvDxg3DlL+/rf/ramuzs3NjYmLnThpEjl/zJy5c0+dOBGfEM9is7FkEQRBMIIZilQi7e7uDgoOJlcnJSY2NjZ0dHSoVCpSXYC4CRMyMjIkgxIHB0dYteJbqZQqCGL6+/tNpyO7Q9hs9l1NUIYgCII8lBEMQSOUCgXICY2m/5VBpw8MDNTX1dnbOxjzODg6VFVVCd2F7e1tvn6+XZ2d9g4OZ8+cATXav3evXK6YO3+elZXVbQ7c0tKSmXGdSugVrrurGw6HNwNBEGSURzBMJnN80PgN364Xtbc3NjTs3rWLoBIKhYJO/1GNqFSqVCoBOUm9krpvz97e3j6CILhcbm5OrqNA4OHpsWPbdp1Od5sDQ6xTVlZWXlZWWVFRWVmJMyUjCIKM/ggGeHzt2hPHjx86eNDa2saKz+dwuBC+KBTZxgxKpZJOZ0CM8sxzz1ZVVk6fOWPPrt1z5s3duX378kdWQIZLFy9KpVIOh3OrAwcAf/sruSzuE7/2yit4MxAEQUa/wECAMmfuXHL5w/fenz1vrpOzU3tbuzFDXW2d0F0IC3YGzpw+7ePra83nG4dSaDSaRqO5w5MAKbp9uIMgCIKMEoEh6e/vh7jE3sEBgg1YtbG1gbhkclLSwMBATnb2a2++QWbr6empKK/4wwt/NNOZgahIJBKVUkkjaFwuF8sXQRDk9oB7zQTMzc3ui59NoSgVCrlc/ns8aTW8wPT29G7fthUEJjIyasasmWTiE089tWnDhqrKKhCYBYsW2tvbk+lnT5+ZlDiJMLz7AvKzft06Go0+dVoKhEFYdRAEQW4PSMu1tLTTp0/TaLQRfpoWBA3igaTk5MnJyabv1P++AsPmsOcvWOjs4kw+SEZiY2Pz5l/+Ul9Xb2dvZzq4kjQl2Sg2sXFxnp6eVIKwtbXFeoMgCPKLMBiM/Pz80rLyoJBQlXpEn6el0+hVNeU8Hi9l+vSRExgI18ghlp/j7uE+JMWoLjdWHRywxiAIgtxpGKHT0el0D0/PoJAQ1e9g5W+vbXKlAv79nUbBaXh3EQT5nbi//eQP18sPGo1GZWAkD0qhUDRq9e+3fxQYBEF+LxQKxe9qv25n2uh00x5+5P7cBSwCBEHuOQRBiMXi//vrX9VqNTHihh7iADaL9d8PPgCNwZe4UWAQBBlVUCgUuVwmk0ofeWzN79fFPyyG74xId2zZrFarMIhBgUEQZHRizmJZ8fnMERcYhv69EiaWPwoMgiCjFtAVrUbPSAoMeVAs/AcBfBcSQRAEwQgGQRBkjIWAav1jePrPuBjHk7RaLfmlRyqVSn5ChUyBTLBKfvGFfLThvn9OBQUGQRDkQQREgslkent7Men0XrG4uaWVoFJBSCwtLZydnEBL2kWizs4uUBQWiwXZ5DJ5bW2tVqfTanVWlhZMJqOjs+v+agx2kSEIgjyIsQuDTo+JitSo1S1tbR7uwgB/P6VSaWVpGREW2tcn7ujoDA0JdhIIzHRmYSHB3V3dXA7bz8/PEPHofHy8NRrtff9GPQoMgiDIAwdEKq6uLnKFvLSsvKurOy+/0NNdCKoDytHU3FLf0NDc0lJRWeXl5cG3ttJoNXX19bBqa2sN27q6uMhkMlFHB3G/u8hQYBAEQR48KBSpVMblcplMpkqltrO16e8f0Op0EqnU2lo/85ZWq7Oxtu7u7mHQGZCBSqVqdfC7ztyc6ewsALGh0+ma+/003S3HYNLT0ivKy9RqTURkRERkJJmYlppaXFREELQ58+YKIDQzM7tw7nxxcXHAuICUadPIPGfPnIH81tbWWEMQBBnOclLA9pELKrXa9JFiSCcIQq1Wq1QqsJiwCnnUYCYN35uBZRqNNsJf67pvppkgWlpbrawsZ0ybChGMtY315StpoCVlZeUx0VHTUqaolCookZzcPDC2bDZbZ2bG4/KkUqmbq6uoo9PTw93Ozq61tbW2rp58EOABimAuXriQeT1j7vz5s+bMPrBvf0F+PiSe+OF4QX7B4qVLQ8PCPvv4E7jNOdnZ5eVlK1evys3JKSkuhjxVlZVNjY1WVlbYihAEGVZdKGaU7MzM0ydPnDtzekAsJj8kQ8pJVUXF0SOHS0uKyZf/065cOXbkSFtrq36iFFAatTo3O3uMzH5LfmLZ3Ny8tV00IJFAcAJxCUgti8WimJm1Q+LgIAQrjg4O3d3dvb29E+PjPDyEbe0iHo9H1Q/7m1/LuC4UuoFEae7fx3KGF5iraemzZs8BAXRxcQmPCM/Py4ervXTx4mNrHofEqOgoobvwesb1kuKShImTbG1twyMiysrKYMNzZ8/OW7AApxpDEGR4x5xGu3D+bG9Pd2RUNN/a5tCB/Qq5HFxsMJ2HD+wvKSn29PQSGB6RupqWCpHL+JDg82dOKxQKJpNZUlwkl8sZjDHxij6oqa+vt1anzc7OLSkpu5KW7u/na2nBCxo/DlSkoLA4Oyc3v6AwPDwUSqa4pLSqqiY3r8DG2qaxqQlc/Na2dqlUBqGPna3tfXztdHgl8PH1vXzpkplhoKm8vDw6NgbiEktLS9BGMkNQcEhZaSn4FAwmQ78XChV0NT8vz8PDk8PhiMXiuzoJ2MnvMVsngiAPWvgilUprqqsnT5lqbWMTGxdHoxFNjQ1gPc6cOmln77Dq0cdDwsKsrPgymay1tSU8ItLXz9/SygqCmP7+frBCUbGxoDpjpLhsbWw7OjoJgspkMgYGIGKRWFtbc7m8js5OBoMOutLZ2QXZIMqBgu3s6gITTafT2traQcUhJCBtqlarvY/WdfgxmGUrlv/nnX+//KcXJRJJ0pTkgIAACF+s+HxjBi6XAxccFBwEoa63t3dVdVVISAgEOpFRkRu+Xa9SqZKnJIeFh9/mwAX5+Zs3fUfQ9K8FifvE4Jhg80OQUY/hI2HM+rpacFI7RCKFUunk5NzY0CAZHIyKjrly+aKFhaW3j4/eLILnShCwQL5gmJudNT4oWGewl/oB7dH/jWRKa1urr483RCEqtVro5kan05tbWuzsbAP8ffMLikBC/Hx9wA6DlSZHp7w8PcrKK6BwQIwd7O1BnKysLCGguY9dSsMLTFZmJpzZsuXLWltbT586VVZWBiJJpf5EBlUqZUxsLPz06Ucfg5b09PT4B/hfunhp1aOr4Wq//vLL4OAQ0I9bHdjNTfjYmsfNDH2vIpFo985d2PYQZHQDNpEgiPkLF+3ctjU7KxPiktlz59k7OkL40trSXFFeBsFKYX5eWWnxoiXLGQymqK0NLA8YUJVSqVAq1Gr1sSOH6QxGUvIUNoczujUGYpGamjqKGTUiTD+PMpVCzc7J1Wg0BYVF4wL8IyPCYRlKIDsnjwxTnJwEoCt9fWIot+qa2pCQoIT4uNbWNrG4/z4O8g8jMBB/HDl8+NXXX7exsQFXwtFRsG3rlqeefqa3t8+YB64EIjUQkrVPPKFQKAYHBw/uPxCfkHD50iXYyiAbxKBkEEK2Wx2Yb83nW0eQyyBO+/fuw+aHIKMeMBpVlZXevr5e3j7VvIq8nFwfXz8IZdyE7lNSpmu0mvCIyE3frquuqpw4efKFs+cKCvLGBQY2NNQL3d0L8vIWL1uRee3q9Yxr02fOGvXdHuB8V1ZV1dXrn6wDM2tmCFNAS0BjGAz9sAIkwk9kgNLd3SMSdYAsmRmGNnJy8iDiUSqV91FdhhcYOCe5TM6/2SFm72APN9LB0aG3t0cmlbLYbDN9B1eBsQcMAt6d27dPSZlKdgXeLBoKw/Ak4p2gkCvGyJMhyOho9vexUxvsy8PbWMDYtba0QKTy6Jq1sBwSGnpw/7701FQOhwOOrFarUcjl5uYsV6EQFCVl+ow58+dDSbc0t4DZoVApEN+Ys8yFHh7p+vH/MfG9ZHI0RT9p202doNyUGfJX08DAWC0pBqCI7q+6DC8wcLN9/fw2bdi4cPEiEJu9u3cnJSezWKy4CRM2rF//yKpVFeUVIDYxsTFk/vy8PJBTLy8vKAgWi52TnQ0XZmNjS0oRgowyBxzcRplMZjbiVl5nMNBsNvvhfUoTzr+rq9McrAmbPdCv77pxcXVrqK9zEwrbWlvJ55XBI+/v74ewBowPZFSrNcWFBTPnzK2vqyPLX6NR025+0hExrZkPokAOm/r0s8+cO3v26JEjVCoRExs7IT4eEhctXnz61Kl9e/byrfkvvvwy/WaA0tTUNH3mTPIKH1m18sihwxDTLF2+DG85MvoA9+uLzz5LS021trYZ6UiCYtbd1fXGn/88KTFRr3APIeCJe3p5ZWZcy8vJ8fL2bm9ry8vNnjgp0dVNmJudXZCX5+3jU1xUCFfn4+ujVqnAyFxLT3dz9+DxeA6OjtmZ18V9fTXV1QInZxSYhyMCu1UnwLTp03+ePn3GjOkzhibOnTfPuGxra/vUM09jsSKjmN6ennkLF4VHRIKLPZLHBb9t+5bN4Pg/vLZVq9VyONz5ixZnZ2ZWV1VSKZS4CfGeXt4g1VCkV1NTKyvK4TJnzZnLYDA1Gs3gwIBMJo2KiZFKpXw+Pzwy8tiRwzZ2dqHhESNc+Mi9FBgEQW4FQRA0AyP8FBN50Ifdc4cgxsbGFiREoVDQGQyKYfAA0kE/5i1cSL5QqTagv2Q6fdLkJPB3QYEg27jA8T6+flAIIzxFJoICgyAjh+4mI3zQ0VF6hjmU9bNjqU2+KkYmgpaYhibk8xTGCyfHsUntQR4K8JsuCII8QMp9+xQMXFBgEARBEAQFBkEQBEGBQRAEQVBgEARBEBQYBEEQBEGBQZAHE4oJVCqV/EiUfsIkhn7CJIIg6HQGmZP8BAY5GTCZct8/GIUgvxP4HgyC/OZWRKNVlJdXlpfR9N+y1b+oAeIxe+48jUaTevmSuK9PqVL5BwQEjAvU6XTZmZn19XV8Pn/S5Mng4THo9GtX09w9PO0dHMbIBxwRFBgEQe4UEAY3odBRIKDop2dl5ufmdojaORzO8WNHNRp1yoyZg4OD+/fssrTiq5TKhoa6RUuXHT96pKiwMDZuQl1tbXd3d1RM7BiYQQsZc2AXGYL8ViAuYTAYPB6Py+OxWKzGhvrYCfEKhaKutiYsIhIkx9nZWSBwbm9rhdjF18+fzWb7+Pq3t7XBtnm5OVHRMXQ6HV8hRMaKwPT19TU3N7caaG9rHxgYMP5UX1ff09NjXFWr1TXV1aahvVQi1c+NgyBjTGPIyX3LSkqYTKbA2RnkwsXVLTcrG37tEIm6u7u8vPVfCKZQDFPD6nTm5uZlpaVWVlYgS60tLaZzeyDI6GD4Og31vrSkhByWFInaCYL26uuv9ff379i2DVpFV1dXUFDwzNmzIPDftmULZBscHHjuD38wTN6g3rljx7IVy6GNYeEiY5CiwoK4+ASNWg1e17QZMzet/3bdl593d3VPmzFD4OTk6uYGGcYFBkJw4+TsUl1V6enldebkCVAjZxeXmNg4/EgwMvoFJm7CBPgjl3du3+7k7AwLmzdtAl1JnjpFLpf/7a23IqIiszOzXFxd582fv23L1mtXryVPSb588ZK7h/ttZkpGkNEKnU6vrqqiUChuQiHoBIPBuJqWKnR3j4qOEbW3p6VesbWzDxgX2NnReWj/PtAVhUIuEDhVlJXFxE2ws7fftWN7YOB4prk59pUho4ZfGIPp6+2tr6tPnDy5t6e3taUV1AUSIYiJjYtLT00TdYh8/fzM9F0Brj093SA8ZWVlKdOm3XXLZNDxTiAPOxQqNS83OyQ8HASCSqX29fWWFBdPTp5iaWUVFBISP3Fi6uVLWq0WFhYsXuLj69fe3u7p7T0wMADqQtBoTAZDIpE8vLNVIsidRjBGTpw4EREZCZW+vr7OwdHRmO7u7pF5PcPW1k4mlcKqVCrhW/HPnjkDUnQ9I0Mmk01KTLx9UxkcHGxrbSXziEQifIQGebgbEo3WWF8PgYuvr59KpSQIQqlUaTRqiGM0Go1Wqx9xMTMM1ahUKghTLpw/Fzg+iG2YVlytVtPIl2MYONSPjBmBAd+qsqLyf/76Fiz3dPeY
Скачать книгу
Яндекс.Метрика