Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей. Мартин ФордЧитать онлайн книгу.
автомобиля. На дороге то и дело возникают ситуации, разрешение которых должно происходить по классическим правилам, но в то же время нужно предугадывать возможную реакцию других участников движения, оценивать последствия.
Восприятие – это важный компонент ИИ, который вполне адекватно удается реализовать через глубокое обучение, но для создания системы ИИ требуется множество других способностей различного типа. Особенно это касается действий, растянутых во времени, таких как поездка в отпуск, или сложных – строительство завода. Такие виды деятельности невозможно организовать, имея только систему типа «черный ящик» с глубоким обучением. Иначе алгоритму глубокого обучения нужно будет продемонстрировать все способы, которые когда-либо применялись для строительства. Научится ли система после этого строить заводы? Нет. Во-первых, таких данных не существует, а если бы они и были – нет смысла строить заводы таким образом.
Для строительства нужны специальные знания. Умение планировать. Знание свойств материалов. Чтобы решать долгосрочные и сложные задачи, можно создать системы ИИ, но глубокое обучение тут не поможет.
М. Ф.: Есть ли достижения в сфере ИИ, которые можно считать прорывом?
С. Р.: Хороший вопрос. Дело в том, что многие достижения, о которых активно говорили в СМИ, это не концептуальный прорыв, а всего лишь демонстрация. Вспомните хотя бы победу суперкомпьютера Deep Blue над Каспаровым. По сути, речь шла о демонстрации алгоритмов, разработанных тридцатью годами ранее и постепенно совершенствовавшихся на более мощном оборудовании. Но прорыв заключался в особенностях шахматной программы. В ней интересны и способ прогнозирования, и альфа-бета-алгоритм, сокращающий объем поиска, и некоторые из методов проектирования функций оценки. В итоге, как это часто бывает, СМИ назвали прорывом то, что им не является.
Также и сегодня. Вспомните отчеты о восприятии и распознавании надиктованной речи, заголовки в газетах о точности понимания текста на уровне человека или еще точнее. Но все эти впечатляющие практические результаты – только демонстрация прорывов, произошедших в 1980–1990-х гг.
Сейчас к более старым достижениям прибавлены современные методы проектирования, огромные наборы данных, многоуровневые сети и новейшее оборудование. Есть интерес к ИИ. Но обсуждаются не прорывы.
М. Ф.: Можно ли считать примером прорывной технологии программу AlphaZero от DeepMind?
С. Р.: Это интересная программа. Но нет ничего удивительного в том, что программное обеспечение для игры го смогли использовать для игры в шахматы и сеги на уровне чемпионов мира.
Тот факт, что программа AlphaZero менее чем за сутки научилась играть на сверхчеловеческом уровне в три разные игры, используя одно и то же программное обеспечение, безусловно, вызывает волнение. Но это всего лишь подтверждает, что если вы четко понимаете класс задачи, особенно детерминированной, если есть два игрока, делающих ходы по очереди, а игра идет по известным правилам и за ней