Эротические рассказы

A System of Logic, Ratiocinative and Inductive. John Stuart MillЧитать онлайн книгу.

A System of Logic, Ratiocinative and Inductive - John Stuart Mill


Скачать книгу
or less similar, has left a number of vivid, unexpressed, ungeneralized analogies in his mind, the most appropriate of which, instantly suggesting itself, determines him to a judicious arrangement.

      The skill of an uneducated person in the use of weapons, or of tools, is of a precisely similar nature. The savage who executes unerringly the exact throw which brings down his game, or his enemy, in the manner most suited to his purpose, under the operation of all the conditions necessarily involved, the weight and form of the weapon, the direction and distance of the object, the action of the wind, etc., owes this power to a long series of [pg 144] previous experiments, the results of which he certainly never framed into any verbal theorems or rules. The same thing may generally be said of any other extraordinary manual dexterity. Not long ago a Scotch manufacturer procured from England, at a high rate of wages, a working dyer, famous for producing very fine colors, with the view of teaching to his other workmen the same skill. The workman came; but his mode of proportioning the ingredients, in which lay the secret of the effects he produced, was by taking them up in handfuls, while the common method was to weigh them. The manufacturer sought to make him turn his handling system into an equivalent weighing system, that the general principle of his peculiar mode of proceeding might be ascertained. This, however, the man found himself quite unable to do, and therefore could impart his skill to nobody. He had, from the individual cases of his own experience, established a connection in his mind between fine effects of color, and tactual perceptions in handling his dyeing materials; and from these perceptions he could, in any particular case, infer the means to be employed, and the effects which would be produced, but could not put others in possession of the grounds on which he proceeded, from having never generalized them in his own mind, or expressed them in language.

      Almost every one knows Lord Mansfield's advice to a man of practical good sense, who, being appointed governor of a colony, had to preside in its courts of justice, without previous judicial practice or legal education. The advice was to give his decision boldly, for it would probably be right; but never to venture on assigning reasons, for they would almost infallibly be wrong. In cases like this, which are of no uncommon occurrence, it would be absurd to suppose that the bad reason was the source of the good decision. Lord Mansfield knew that if any reason were assigned it would be necessarily an afterthought, the judge being in fact guided by impressions from past experience, without the circuitous process of framing general principles from them, and that if he attempted to frame any such he would assuredly fail. Lord Mansfield, however, would not have doubted that a man of equal experience who had also a mind stored with general propositions derived by legitimate induction from that experience, would have been greatly preferable as a judge, to one, however sagacious, who could not be trusted with the explanation and justification of his own judgments. The cases of men of talent performing wonderful things they know not how, are examples of the rudest and most spontaneous form of the operations of superior minds. It is a defect in them, and often a source of errors, not to have generalized as they went on; but generalization, though a help, the most important indeed of all helps, is not an essential.

      Even the scientifically instructed, who possess, in the form of general propositions, a systematic record of the results of the experience of mankind, need not always revert to those general propositions in order to apply that experience to a new case. It is justly remarked by Dugald Stewart, that though the reasonings in mathematics depend entirely on the axioms, it is by no means necessary to our seeing the conclusiveness of the proof, that the axioms should be expressly adverted to. When it is inferred that AB is equal to CD because each of them is equal to EF, the most uncultivated understanding, as soon as the propositions were understood, would assent to the inference, without having ever heard of the general truth that “things which are equal to the same thing are equal to one another.” This remark of Stewart, consistently followed out, goes to the [pg 145] root, as I conceive, of the philosophy of ratiocination; and it is to be regretted that he himself stopped short at a much more limited application of it. He saw that the general propositions on which a reasoning is said to depend, may, in certain cases, be altogether omitted, without impairing its probative force. But he imagined this to be a peculiarity belonging to axioms; and argued from it, that axioms are not the foundations or first principles of geometry, from which all the other truths of the science are synthetically deduced (as the laws of motion and of the composition of forces in dynamics, the equal mobility of fluids in hydrostatics, the laws of reflection and refraction in optics, are the first principles of those sciences); but are merely necessary assumptions, self-evident indeed, and the denial of which would annihilate all demonstration, but from which, as premises, nothing can be demonstrated. In the present, as in many other instances, this thoughtful and elegant writer has perceived an important truth, but only by halves. Finding, in the case of geometrical axioms, that general names have not any talismanic virtue for conjuring new truths out of the well where they lie hid, and not seeing that this is equally true in every other case of generalization, he contended that axioms are in their nature barren of consequences, and that the really fruitful truths, the real first principles of geometry, are the definitions; that the definition, for example, of the circle is to the properties of the circle, what the laws of equilibrium and of the pressure of the atmosphere are to the rise of the mercury in the Torricellian tube. Yet all that he had asserted respecting the function to which the axioms are confined in the demonstrations of geometry, holds equally true of the definitions. Every demonstration in Euclid might be carried on without them. This is apparent from the ordinary process of proving a proposition of geometry by means of a diagram. What assumption, in fact, do we set out from, to demonstrate by a diagram any of the properties of the circle? Not that in all circles the radii are equal, but only that they are so in the circle ABC. As our warrant for assuming this, we appeal, it is true, to the definition of a circle in general; but it is only necessary that the assumption be granted in the case of the particular circle supposed. From this, which is not a general but a singular proposition, combined with other propositions of a similar kind, some of which when generalized are called definitions, and other axioms, we prove that a certain conclusion is true, not of all circles, but of the particular circle ABC; or at least would be so, if the facts precisely accorded with our assumptions. The enunciation, as it is called, that is, the general theorem which stands at the head of the demonstration, is not the proposition actually demonstrated. One instance only is demonstrated: but the process by which this is done, is a process which, when we consider its nature, we perceive might be exactly copied in an indefinite number of other instances; in every instance which conforms to certain conditions. The contrivance of general language furnishing us with terms which connote these conditions, we are able to assert this indefinite multitude of truths in a single expression, and this expression is the general theorem. By dropping the use of diagrams, and substituting, in the demonstrations, general phrases for the letters of the alphabet, we might prove the general theorem directly, that is, we might demonstrate all the cases at once; and to do this we must, of course, employ as our premises, the axioms and definitions in their general form. But this only means, that if we can prove an individual conclusion by assuming an individual fact, then in whatever case we are warranted in making an exactly similar assumption, [pg 146] we may draw an exactly similar conclusion. The definition is a sort of notice to ourselves and others, what assumptions we think ourselves entitled to make. And so in all cases, the general propositions, whether called definitions, axioms, or laws of nature, which we lay down at the beginning of our reasonings, are merely abridged statements, in a kind of short-hand, of the particular facts, which, as occasion arises, we either think we may proceed on as proved, or intend to assume. In any one demonstration it is enough if we assume for a particular case suitably selected, what by the statement of the definition or principle we announce that we intend to assume in all cases which may arise. The definition of the circle, therefore, is to one of Euclid's demonstrations, exactly what, according to Stewart, the axioms are; that is, the demonstration does not depend on it, but yet if we deny it the demonstration fails. The proof does not rest on the general assumption, but on a similar assumption confined to the particular case: that case, however, being chosen as a specimen or paradigm of the whole class of cases included in the theorem, there can be no ground for making the assumption in that case which does not exist in every other; and to deny the assumption as a general truth, is to deny the right of making it in the particular instance.

      There are, undoubtedly, the most ample reasons for stating both the principles and the theorems in


Скачать книгу
Яндекс.Метрика