The Mind and Its Education. George Herbert BettsЧитать онлайн книгу.
6, anterior and posterior roots, respectively; 7, complete spinal nerve, formed by the union of the anterior and posterior roots."/> Fig. 10.—Different aspects of sections of the spinal cord and of the roots of the spinal nerves from the cervical region: 1, different views of anterior median fissure; 2, posterior fissure; 3, anterior lateral depression for anterior roots; 4, posterior lateral depression for posterior roots; 5 and 6, anterior and posterior roots, respectively; 7, complete spinal nerve, formed by the union of the anterior and posterior roots.
The Spinal Cord.—The spinal cord proceeds from the base of the brain downward about eighteen inches through a canal provided for it in the vertebræ of the spinal column. It is composed of white matter on the outside, and gray matter within. A deep fissure on the anterior side and another on the posterior cleave the cord nearly in twain, resembling the brain in this particular. The gray matter on the interior is in the form of two crescents connected by a narrow bar.
The peripheral nervous system consists of thirty-one pairs of nerves, with their end-organs, branching off from the cord, and twelve pairs that have their roots in the brain. Branches of these forty-three pairs of nerves reach to every part of the periphery of the body and to all the internal organs.
It will help in understanding the peripheral system to remember that a nerve consists of a bundle of neurone fibers each wrapped in its medullary sheath and sheath of Schwann. Around this bundle of neurones, that is around the nerve, is still another wrapping, silvery-white, called the neurilemma. The number of fibers going to make up a nerve varies from about 5,000 to 100,000. Nerves can easily be identified in a piece of lean beef, or even at the edge of a serious gash in one's own flesh!
Bundles of sensory fibers constituting a sensory nerve root enter the spinal cord on the posterior side through holes in the vertebræ. Similar bundles of motor fibers in the form of a motor nerve root emerge from the cord at the same level. Soon after their emergence from the cord, these two nerves are wrapped together in the same sheath and proceed in this way to the periphery of the body, where the sensory nerve usually ends in a specialized end-organ fitted to respond to some certain stimulus from the outside world. The motor nerve ends in minute filaments in the muscular organ which it governs. Both sensory and motor nerves connect with fibers of like kind in the cord and these in turn with the cortex, thus giving every part of the periphery direct connection with the cortex.
The end-organs of the sensory nerves are nerve masses, some of them, as the taste buds of the tongue, relatively simple; and others, as the eye or ear, very complex. They are all alike in one particular; namely, that each is fitted for its own particular work and can do no other. Thus the eye is the end-organ of sight, and is a wonderfully complex arrangement of nerve structure combined with refracting media, and arranged to respond to the rapid ether waves of light. The ear has for its essential part the specialized endings of the auditory nerve, and is fitted to respond to the waves carried to it in the air, giving the sensation of sound. The end-organs of touch, found in greatest perfection in the finger tips, are of several kinds, all very complicated in structure. And so on with each of the senses. Each particular sense has some form of end-organ specially adapted to respond to the kind of stimulus upon which its sensation depends, and each is insensible to the stimuli of the others, much as the receiver of a telephone will respond to the tones of our voice, but not to the touch of our fingers as will the telegraph instrument, and vice versa. Thus the eye is not affected by sounds, nor touch by light. Yet by means of all the senses together we are able to come in contact with the material world in a variety of ways.
5. LOCALIZATION OF FUNCTION IN THE NERVOUS SYSTEM
Division of Labor.—Division of labor is the law in the organic world as in the industrial. Animals of the lowest type, such as the amœba, do not have separate organs for respiration, digestion, assimilation, elimination, etc., the one tissue performing all of these functions. But in the higher forms each organ not only has its own specific work, but even within the same organ each part has its own particular function assigned. Thus we have seen that the two parts of the neurone probably perform different functions, the cells generating energy and the fibers transmitting it.
It will not seem strange, then, that there is also a division of labor in the cellular matter itself in the nervous system. For example, the little masses of ganglia which are distributed at intervals along the nerves are probably for the purpose of reënforcing the nerve current, much as the battery cells in the local telegraph office reënforce the current from the central office. The cellular matter in the spinal cord and lower parts of the brain has a very important work to perform in receiving messages from the senses and responding to them in directing the simpler reflex acts and movements which we learn to execute without our consciousness being called upon, thus leaving the mind free from these petty things to busy itself in higher ways. The cellular matter of the cortex performs the highest functions of all, for through its activity we have consciousness.
The gray matter of the cerebellum, the medulla, and the cord may receive impressions from the senses and respond to them with movements, but their response is in all cases wholly automatic and unconscious. A person whose hemispheres had been injured in such a way as to interfere with the activity of the cortex might still continue to perform most if not all of the habitual movements of his life, but they would be mechanical and not intelligent. He would lack all higher consciousness. It is through the activity of this thin covering of cellular matter of the cerebrum, the cortex, that our minds operate; here are received stimuli from the different senses, and here sensations are experienced. Here all our movements which are consciously directed have their origin. And here all our thinking, feeling, and willing are done.
Division of Labor in the Cortex.—Nor does the division of labor in the nervous system end with this assignment of work. The cortex itself probably works essentially as a unit, yet it is through a shifting of tensions from one area to another that it acts, now giving us a sensation, now directing a movement, and now thinking a thought or feeling an emotion. Localization of function is the rule here also. Certain areas of the cortex are devoted chiefly to sensations, others to motor impulses, and others to higher thought activities, yet in such a way that all work together in perfect harmony, each reënforcing the other and making its work significant. Thus the front portion of the cortex seems to be devoted to the higher thought activities; the region on both sides of the fissure of Rolando, to motor activities; and the rear and lower parts to sensory activities; and all are bound together and made to work together by the association fibers of the brain.
In the case of the higher thought activities, it is not probable that one section of the frontal lobes of the cortex is set apart for thinking, one for feeling, and one for willing, etc., but rather that the whole frontal part of the cortex is concerned in each. In the motor and sensory areas, however, the case is different; for here a still further division of labor occurs. For example, in the motor region one small area seems connected with movements of the head, one with the arm, one with the leg, one with the face, and another with the organs of speech; likewise in the sensory region, one area is devoted to vision, one to hearing, one to taste and smell, and one to touch, etc. We must bear in mind, however, that these regions are not mapped out as accurately as are the boundaries of our states—that no part of the brain is restricted wholly to either sensory or motor nerves, and that