Los perfeccionistas. Simon WinchesterЧитать онлайн книгу.
se lo describe tan cercanamente como es posible a lo que es, a su valor verdadero. Si se describe algo con gran precisión, se lo describe con el mayor detalle posible, aun cuando ese detalle no sea necesariamente el verdadero valor de lo que se describe.
Se puede describir la proporción constante entre el diámetro y la circunferencia de un círculo, pi, con una gran precisión, como 3,14159265358979323843, digamos. O pi puede felizmente expresarse con exactitud hasta siete cifras decimales como 3,1415927, y esto es estrictamente cierto porque la última cifra, 7, es la manera aceptada por las matemáticas para redondear el valor de un número (como acabo de escribirlo y señalarlo dejando un espacio inmediatamente después) cuyo verdadero valor termina con 65.
Un modo un poco más simple de explicar más o menos lo mismo es mediante un blanco para tiro con pistola formado por tres círculos concéntricos. Supongamos que usted dispara seis veces al blanco y los seis tiros yerran por mucho, no impactan siquiera en el blanco. Sus disparos en este caso no son ni precisos ni exactos.
Quizá todos los disparos han caído en el círculo interior, pero en distintas partes alrededor del blanco. Esta vez ha disparado usted exactamente, porque están todos cerca de la diana, pero con escasa precisión, pues los disparos han impactado en distintos puntos del blanco.
Acaso los disparos están todos en alguno de los anillos exteriores, muy cerca unos de otros. Aquí hace usted gala de una gran precisión, pero no es lo suficientemente exacto.
Finalmente, está el caso anhelado, merecedor de un redoble de tambor: los disparos forman un grupo compacto y han impactado la diana. Este es el desempeño ideal, pues usted ha conseguido ser muy preciso y exacto.
El dibujo de un blanco permite fácilmente diferenciar la precisión de la exactitud. En A, los disparos están agrupados y cerca de la diana: hay precisión y exactitud. En B hay precisión, sí, pero como los disparos han caído lejos del blanco no son exactos. En C, los disparos están muy dispersos, no exhibe precisión ni exactitud. Y en D, donde se observa cierto agrupamiento y una mayor proximidad a la diana, hay cierto grado de precisión y de exactitud, pero muy moderado
En estos dos casos, al escribir el valor de pi o tirar al blanco, la exactitud se logra cuando la acumulación de resultados se acerca al valor deseado, que en estos ejemplos es el verdadero valor de la constante o el centro del blanco, respectivamente. La precisión, en cambio, se alcanza cuando los resultados acumulados son cercanos entre sí, cuando el intento de dar en el blanco varias veces tiene exactamente el mismo resultado, aun cuando este no se acerque necesariamente al valor verdadero buscado. En suma, la exactitud se cumple en la intención; la precisión, en sí misma.
Hay una última definición que agregar en esta confusa madeja: el concepto de tolerancia. La tolerancia es un concepto particularmente importante para nuestro propósito por razones tanto filosóficas como organizativas: este es el principio alrededor del cual está organizado este libro. En vista de que el anhelo creciente de una precisión cada vez mayor parece ser un leitmotiv de la sociedad moderna, he dispuesto los capítulos a continuación en orden ascendente de tolerancia, comenzando la historia con tolerancias bajas, del orden de 0,1 o 0,01, para terminar con las tolerancias absurdas, casi imposiblemente altas, con las que hoy día trabajan algunos científicos –hay reportes recientes de mediciones de diferencias tan minúsculas como 0,00000000000000000000000000001 gramos, 10 a la -28 gramos, por ejemplo–.4
Y, sin embargo, este principio también motiva una pregunta filosófica más general: ¿Para qué?, ¿cuál es la necesidad de estas tolerancias?, ¿acaso la carrera por alcanzar cada vez mayor precisión que sugieren estas mediciones ofrece un beneficio real para la sociedad?, ¿no habrá un riesgo de convertir la precisión en un fetiche, de fabricar objetos dentro de tolerancias cada vez más extraordinarias simplemente porque lo podemos hacer o porque nos parece que deberíamos poder hacerlo? Dejaremos estas preguntas para después, pero por lo pronto imponen la necesidad de definir qué es la tolerancia, para que sepamos tanto de este aspecto particular de la precisión como de la precisión misma.
Aunque he dicho que puede uno ser preciso en la forma de emplear el lenguaje, o exacto a la hora de pintar un cuadro, en la mayor parte de este libro examinaré esas propiedades en su aplicación a objetos manufacturados y, en la mayoría de los casos, a objetos manufacturados por maquinaria a partir de materiales duros: metal, vidrio, cerámica, etcétera. No de madera, sin embargo. Si bien puede ser tentador observar un ejemplo exquisito de mobiliario de madera o el retablo de un templo, admirar la exactitud del cepillado y la precisión de los ensambles, los conceptos de precisión y exactitud nunca pueden estrictamente aplicarse a los objetos hechos de madera, porque la madera es flexible; se hincha y se contrae en formas impredecibles y no puede tener nunca unas dimensiones verdaderamente fijas porque por naturaleza es una materia que aún pertenece al mundo natural. Cepillada o unida, ensamblada o torneada o barnizada hasta brillar, es fundamentalmente inherentemente imprecisa.
Una pieza de metal trabajada en varias máquinas, una lente de vidrio pulido, un filo de cerámica de alta temperatura, en cambio, pueden fabricarse con precisión auténtica y definitiva, y si el proceso de manufactura es impecable, pueden fabricarse una y otra vez, cada una igual a la otra, cada cual potencialmente intercambiable por otra cualquiera.
Cualquier pieza de metal (o vidrio o cerámica) manufacturada tiene por fuerza propiedades químicas y físicas: tendrá masa, densidad, un coeficiente de expansión, un grado de dureza, calor específico, etcétera. Posee por fuerza características geométricas: debe tener grados medibles de rectitud, llanura, circularidad, cilindricidad, perpendicularidad, simetría, paralelismo y posición en el espacio, entre otras cualidades aún más esotéricas e ignoradas.
Para cada una de estas dimensiones y geometrías, la pieza manufacturada debe tener lo que hoy ha llegado a conocerse como tolerancia.5 Tiene que tener cierto grado de tolerancia si ha de formar parte de una máquina, sea esta un reloj, un bolígrafo, una turbina de jet, un telescopio o el sistema de guía de un torpedo. Hay una ínfima necesidad de tolerancia si el objeto manufacturado va a colocarse aislado en medio de un desierto. Pero si tiene que acoplarse con otra pieza de metal de manufactura igualmente fina, tendrá que cumplir con un grado de variación en sus dimensiones y geometría especificado o previamente acordado que asegure la posibilidad de su acoplamiento. Esa variación permitida es la tolerancia, y cuanto más precisa sea la pieza manufacturada, mayor será la tolerancia requerida y especificada.
Un zapato, por ejemplo, es invariablemente un objeto que requiere de muy baja tolerancia. Por un lado, una zapatilla mal hecha puede tener un grado de variación permitido en sus dimensiones especificado o convenido (que es la definición formal de tolerancia para un ingeniero) de media pulgada, es decir una holgura tan generosa entre el pie y el forro que vuelve casi irrelevante el concepto de precisión. Un zapato hecho a mano por Lobbe de Londres, por el otro, parecerá ajustarse cómodamente, perfectamente, hasta precisamente, pero aún tendrá una tolerancia de un octavo de pulgada –y para un zapato es una tolerancia aceptable y puede por supuesto lucirse con orgullo–. Pero en términos de ingeniería de precisión, su hechura es cualquier cosa menos precisa, no es ni siquiera exacta.6
Uno de los dos instrumentos más precisos construidos por iniciativa humana se ubica en la región noroeste de la costa pacífica de Estados Unidos, lejos de todo, en el interior árido del estado de Washington. Fue erigido justo fuera de las instalaciones nucleares ultrasecretas donde Estados Unidos fabricó los primeros suministros de plutonio para la bomba que arrasó Nagasaki. El plutonio fue durante décadas la materia prima del corazón de la mayor parte del arsenal de armas nucleares de ese país.
Los años de manejo de materiales nucleares han dejado una herencia de proporciones inimaginables de sustancias peligrosamente contaminadas por radiación, desde las barras de combustible hasta las prendas de vestir, que apenas ahora, tras un escándalo público, están siendo regeneradas –o remediadas, como prefieren decir los conservacionistas–. Hoy día, el Hanford Site, como se lo conoce, es oficialmente el más grande emplazamiento de limpieza ambiental del mundo, con costes por descontaminación que alcanzan decenas de billones de dólares