Эротические рассказы

Теория относительности с точки зрения путешественника во времени. Николь ВалентайнЧитать онлайн книгу.

Теория относительности с точки зрения путешественника во времени - Николь Валентайн


Скачать книгу
из романа «Осквернитель праха».

      7

      Имеется в виду молоко типа сгущенного, но без сахара.

      8

      Гипотетический «прокол», «проход» в пространстве-времени, соединяющий две точки, которые могут быть как в одном пространстве времени, так и в разных.

      9

      Решётка Пеннета (автор – английский генетик Пеннет) позволяет определить возможные комбинации генов при оплодотворении. Митохондриальная ДНК наследуется только по материнской линии.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAICAgICAQICAgIDAgIDAwYEAwMDAwcFBQQGCAcJCAgHCAgJCg0LCQoMCggICw8LDA0ODg8OCQsQERAOEQ0ODg7/2wBDAQIDAwMDAwcEBAcOCQgJDg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg7/wgARCAjuBdwDAREAAhEBAxEB/8QAHQAAAQUBAQEBAAAAAAAAAAAAAwABAgQFBgcICf/EABwBAAMBAQEBAQEAAAAAAAAAAAABAgMEBQYHCP/aAAwDAQACEAMQAAAB+gvP9K55Hom4umWduJxsEwkCBCkUwODggcHBA4IENCdEWIbpODMYaTTEhAgZiBAwJpJs5dicppNs5ZpNKkqT2mpJy9wqlWnuZXD3nKlK5e4VxK1JqdTKpkS+hJp3L0pBIJMRM2SqZlSJTchO04nBwcHBxoEDIqthC2ggU6nJ0gbQannOvm829nwqO2dnPYNg25yXs9NPDfSx2ceH18uTvhk782Hvz1nc6kbUBVqmvUV0gU3E4OEk3djcV7xE5ktJTU1ZI1KtJFOrlI6IPSIgtzTNLkFmLtRpUoCwssiZ4cyxkRY4tLKpzqSa2MdIFWIs8J3FPWK1KtStZ6Xc7C5uZX03H1W8ds3ScnWe08zu9I4NLcPP0nTJyKfQYq8lVHfENPzLi7Lvk+ifj6JY2w0OQp1Lpuxxuk7EDpO2yENA7GQ4ONMaRMQIaBgcGBBEHBAgQJphu0wkDMTSaZpqTtJpWmtO5epVw7T6TK4lcqolpMql7l7mdTIT3MqiVCok5kS9EkOx2npEcuEwcHZITtIHBwcEUyURuE0gNjZahwc8h144nRhdz0t52C48o97wcTp5K9RaW1jPbSx1NNZu2DllTxujmyd8KdxEcGDaSpDBUgqarANIRCSKmKg1XrMV5wG6ck5SzzuZaslXdDaEtHJMVZhkQhhLeXYWglciZtmzVhSy0tRaHYh7vPuyqozUy0PD2ebS9N4PXy891YApFl38dJDQtvk6ui4evO2nI1i9ht1fDv6FxVYQ4pVJB5jfK7nQ870YM2zA83qu+X6J+LolncgSHBgkE2SY4IEEgQIGB0IaYyECTQOCBAwODAhxCQMJwYGBNIaYzTAmkKLSYqT2naak1RJiuJVL0nuH1h6mVzK5lUyqXuZNPSeonUqiTTuZUnBwk1JqQpOXbkDiQ5EuEmM24SHKXBFGio50JJjZl7Os+547qxoawzHc6eN8f6PFyPoebg9fDmbc6dbPL2812+fXZYjXSx6JNwcuiFAqGUM6pVIWwORUgigUwMOFZgrMNQhobpzAyt1UBhGM1d5mnUim1FuMKBliaIBlq8t2Tmr+QeXYz10ctpxrJxrY1BjTdqHs82/Q821DbHh/S4qemcWSkv5bOqeXtcfXq4alm0nvcu3QYuzJu5SUMeyk6wOmMmjVx00syQZvmdN/yfQNxdBZqSEESpAyRGEY7SBAgQOCB0MNwQMxJpiQhoEhAgYECBMZDAgZiBNMCaZpAmNSVJ2lSepcSuH0l2pVL6Q9y7mWkyuXqJXKpTcqpm0+ikJ6l6Tg4Sam04pBJp2ONxSE4SBU0Dg8N02ClU51q5DTJINNxqed2zr3FTSa2kulk74ct6Pm8n6Hl5W/MFsLkbmxHRZz30cejRy6CIG1W1zC5EytUOVWorgOpBUiYMYaiveVOoY0m1NKa1kQNCYNpiiTZSZqmJgOBVZ6RTmFmbu5a6GdUauKrQznUy02ubokqo6wN5lVTk1MNtzm32MNaWmPE+lyV7l1NLRWc71+foSbTWpzb9Vx9N7O9HGulwrdzmzKtC5jZcV1TyfVnErV59+s49dKTK0KXmbaHk99nk6ZZtk0xJxTPUuKQ5MQIExwQIHBgSEJAhuCTTECBIQmGhsCBDYTCZtgcGaYHYzSpIJVLNKk7l7SuFSlUyqHtPczqX0hNS0iTl6Uqh6UqT2pOWamyQnCTTskDicJsQSacTjcJMQnGoqBLjQ8+pmgdEAtKhOalTn6Rz/TimjS+a7ePmO7hx+jmyujlrXFeoJG2hj0X8ei9jvo5auKYUNs6WuQ2Mhiojg3WrKjpNW4o65VWVKY2SVs5KiBSFBpNSM5ERpBEhjAT0lNFWpZqac43sZ1oxSV3crv5vRy1UuTK1yBmnhqZHQ8u3Q8u/LdnLy/dyui/lrmbZ5m2Zs9N7k6rmWt7C9/l6dvnq5D38TosVrkZVvzjsjjvQ5+e6cKNB8t97i6fTPO328nMOM5Nr/ld1nj6Z52wRBIiqYDOSMkxwkxMcECQ4mBDZJwQ0xkIECTZiQgYSBhpjAwIEJhuxNNQhOJUmtOJ6TUnqXcvaeonUvopVKuVcycSuXpScvczpPSepdy7JMkTIHYmOEgkDscmTHCQnSkqkCBAybJoK1pCDQILkgKWNtDowujHB6ecg6l5522UpvivT8vM35zRrdx6bedkmrUaavPtbi2dY3RyU9YBcRHYjW1LC1R1xzNscfbGrc17K7cCmbiKJAxqknmwOTEkNOIQWjlmWh5Rpoa0aNyzoaa0M51MdNjn32ufTnezmGFyLrXLFaGOlqH1vD04nRhzXbzBZ1/nehVvLnO3lqUa3N09NxdKV9JxbdFzXbk28lppaEznUcx0riO7DgfS4qd3scm/V8PTtYbW8q6HCcjWs7g00fK7rPL0yy0ZNCkNxIEEgdj0nBwcHQgdtknYyECBAimBCQMmwIECBgQMxIZiBAmkCoTTVKCVDEppaS4pUnqHuX0mTl6l9Jek+kPUyalSeomJ7JOVadqQTEhOCokEgcTikCCbJIkDjSHB0JOLHAbKrJE19Cu5x9IzNZtyxVNDTOrpIGsjoxyd8Od7OKSdiN9Pn6JCpVJ506bi6uk5OiFTS1jN2yyN8MvfGjrmzVPTKtazNsKtwMK1ld5sEQS1IORTuWGzBmYKkDEUSdbEaTVSSRUo0sRpcjW9lpdydiFpY6ydc/1YOjVxuxF38dtTHTle7lobYCa0cN97h6+r4+jkO/l5/swaa6Li7NPnve577firfzd+VcUxb5jU4btxwOrLk+3mBV6/H1bvJt1PHvNOtc62Sg3l8Ouj5XdZ5egsVGWw3CTUhSoZEkMxDmJwQIHBwYENgcGG4mQmMm6GYgiqRKGgTbCdpAgTGaZicuJmJiYtJk4TUmnuFae5k5e4fQepeok1Kpdp9FNy4PcJqYSB6ES4OyTHCRLBMJBJEk1Q6HTcEEEBpWJqTGSGzN1mlUZGszCzNZmkVKiNLnOzlwunmiBloBlqNNHDStpFay3no6W3z69Fy7s1xno8eN0YFTDUZW+GB1clK88/bADINxnSLpKnTIqPNxciqIUknWtAogMyo8081JU6CTd3PTUw30MdIq7EuzL0MNsvfOrpF/G9bHTSx0vZXnbZ8l38mdrFnLTr/M7/RPM6aek8f34ZWsW862+XXWzrawvqeY3YRhZFnHdUcf3Yc71443RhSqtfj7O68vt6vmrexWfbmiI8PaKnBrqeZ3WOTecaJCBwdjikDsZDtSCCbg4SB2MhMSENgQIEDgw0JJskik04JiYyGYmkmhMJU2EzSE9CqXpSJak9xJiuHpSqX0l2lcycTsTl2p3D0PUvRImQJkmSJcHBBJp2pIZk5chppwdEhoIgNAmpMEyzLqXLhh7ZxCNGnlVWli6xS2y4L1fMp0tbDq1cdatJ0bvL02JdLWKWmeD18eZrhfx32OfodiHidXLXuOb7eDG3yo6YobTQWrEdDKoNumhReYNYYUlbNgejsSboNMznYudFTuZ6afP03stbkWfOxiqaPSyu3k6ukSAkmxhvUuIsxenGKrV5Oj0jyenueSuU6TmurITe5hdmFAJJ9BjO1FYW08N348t283OdnNgdeI1pc5+jufJ7/W/I36zBDogMAYOz4H0eXa8Tt1PM7rHLuSadOKJA7ITUnJGnaQOCYpaBxSCIIHGgQIaQgQOCYkRTdjIehgQmBIZiBAzIgmJy9CpO5dpCepVp7l6l6T1MrlyVcypPRJwqmdqTTUpUpCcJNSFJjjcJCTEKSYUGCbJAwODggpsLKkPM2jN0jN0m9DPN4G+UkxNXJehFZuufN9fNyXo8CVavP1geYLixN7PL0OLoOXprXPE+p5vN9nHXrOrWV3Po08d+e7fPy98czbEDGnS3nshDEadhgClFjMRM1UlRYtxzWoaSUOVNM0aHVEh28tdLHe3F9Jx9Ah89188HfS8Wpk6WsZ2+IxXsdpRehlq6q3ne/x69jxsdPB3kVK7CKiUuQAta+TvTPm3p48l38uVvllb5QV2c99Hn06vz9vWPK6N3KtiVJnJ7Pxz2uLh/R4/Y/i/d0fL7z8nRLO0iCc2rOsMmOKcC3LsdpwcJKU24IECBAgcaScbMQODAkMCBgQ0hDZpAwkxAmmbVDkvSQmYql6SuJUnaekrzlQ9Q7JVL2nFKplcqiTmTlMkKYpAqqQOk7SBJoEhCnQVDAkVaCAyK1zFliGC1w3fy06dDTN2HlkJsRUKXM9nFnbZ6vP0lnTN35+Z7uKhrhBzo4dGZvyvNb/L2c728WdtzkV0dcNHDpFSw+riraSyZc+m3lrfx1g5pa5jGkx0w00tDy5JTmizdmKI2ImQprSxGjpjYaK08Ona5tdbDW1GlW1i9GVrG+x4ejA6sQWszfGjc3Mdr+G/UcXRezo0O9lXSYqYsnWZBh7Tj756eWmrg+v56pUcV25852YZO+eF0YknTp+LptZ1nbZZuuJIr0byuw4uV7seE9Lkyt86Gh71+ffRanmdtzm2KqcHAcNhkcmpJkmnBCkDg7HYkOhMTHBwQJCYwODJoECTYEJgQOEWJNUmBAqSY4k0gTIuVcyaVqVJCVS+sSaTmVKbStSE9TKplSlUyaTJCkDgm5AhSadCQgQMDskm4MKLM+0mmYgz9Iinwno8cQMrDUAua15RpZHRzZ+2O9x9lzLXmO/h5fu88FyGpDSGNMGDlGURYGsxUAcp0aalFuXJNpEmOocYKmrcwYeNTTsp0cRYZVchSFbmzTejhq6obbl2sze4+mtcSKoaQRWyfR8PT1fHryPoc9TSKNtCv8+2/wAnV0nJp0mCdGvKsQsLZ4e0VLnA6oLFbXNennWfaw+rHn+rINKnrNce5za7vNpsY3WueP7+bL3xyenng1mbFKoSZ89vf/hPeu+T6Fvl2ttEZBCTQMNInSm1NjidjgyaCQTadiSQJCbQJjJshwZiBAwJCBmODAwJpJsx6SEgZphMxVLseplaZp6HqHuZVKpSJlSeiTlVM2nqZNSaeiQOhwTHY4nB0nCQMNxIEDDiEBVLVTRApHh870ZIVO1yvfyQcWo0q2XYo01EXN9vFj9HPj9HJX0IlQGBsJqN0iZIQQpO8mvmZjLSckgRQxjZXqHHCshphqXKsZ9EkDaPntbjVyYtTS0M9dDHZxkQROcg6ZIok1V1SSNF2M9D57a/Ltclh0zDSp21L3+PbWw06HnrqOdFA0lDR89us/SM3VRCpc0NYoaweKcKOqqaKnUjK1cK7Hh1spcP6fHzXdx83181GmeNAVJM9djn6Oo4On1z5f0dPzO6zybvFyBIEBGSYgmk7HEShyXbQkNxOxwYEhwTaQgZEgTGQhuERoGQmJpgZN2oicGZFpAzEDtKk7StO5Zkrl2nuXqU5m0RpUlUvSm0nM6HpOKaHBqHB2OlIThIENkO04ODgw5DCLOtBuUFDSMfbPJ2zBawenG5lprYbOmzKmmeJ18fOdfIJyDQp2kx1cp1NLE5r6ZVbkLURGm3LE3Myr1lFgmxVMkxsq6RECRZo0nNICKzxZRJo8q7ltr4b1biprkwGm3CU1ONY0Wcy1loeNUmaWWa0MtEKtpFG3YzfScm+xhW/wA4CzOqdvFpsqMLZQDP2nku/myts97l23+XbC6sszaCzViK1cLmnyfoceB18vP9eOZpmM2iTYirEF3PSc6OR9C/E+5qeZ23OXYkaIEiA5JSYNNkTak1JjinSI04RGgcEJAhoEhUJCBAw0DApGY4MCBDYTAgYHZFjA5KYmKhql6lMelJp6l6UqlOZ0pOWqZNPSdp2pMlRIUhOCCQO0gdiCQITodjAwOOSaaInWc4nREQzNIwOjLM3zo6RbzsLejjpp42CpyenHD6+Spc16jK6Maek2Y2vYbni4tVdM61xV1zebtZ6nh1tJqaQMmjtkBjpnSGwDkFMk2Sakh0IHdMQeXcjQhVnHWzLg1ClWvMs6XsdbWd289BNAoGycXeir+dVqWphsOppaZ5W0ib1ua+/wDM6K9GXtPbcbxN5xd4KmFPteHbjfQw43v5qzW3z7AuMPq56tmlz7bnNvX0mN58v2ceTvGfpVW8xDkq1cX0HLueL5/r5cToy+ovgPotXzO25y7FlobggcGBgHNMmwSFOg7h6HBAgcECYkIHBAmMhA4MDAk0iLHBgQRBCQ0xkJpgTGoTE5alNpmSaVy9TJpVKam1OpekzUqUmnadqQIJNO5imVjggcHaiOTSGpGBCKx0CpWZrM0jlurKnc4nRlU0gTJCdOroohazsss6rJ6OetcVdM83aKGmTLS7ltYmoUohMQwhROKRNe4p6xWuQtQZNO5npQ1xg3JW8uauAoOM7XJM0stNnm6BUq1q3lpcz008byenGrUFjXV59dLLVMy9ozNYG1oY6b3NtdysFDhm7ZQoo3IG7Ob9D8nshUUtJxerLmu7lqXFvLTtPM6+i5teY7sOW7cBi0sdE1Q0kLZ4e1jrznXz4vRizVa1UpBczVXc7eaILO1zyNk819VfBe1reb2XObcudMiI2TnSk06E0w2limkwrktKbTtIpCcExAgdtkMhAgSEhgQJDAmMCBBEGYgQMxgkxnDU3FKkwKh3KuZEqhVCoI1Ny7SaeiVTITsdqQnEmMBESoYEDgwECTEgYq9KY3AAgUsDpzw94UoNqjtnBoFobmvaKqs53S0z0MdRXFaoHawenBhnjW3lWV0Z286PNJFPWDxRJM/eK1Z1dcwuoFWs6ixhSBihsgJ0kOprnStTT0sq0sN8voxu4amHbx12+fbH3yQySV7Qizy0ODVmG47edbPNraitLN1bnluzPF6cxhdw06fj1soDSxurPC6IrXnZzve5NdTKsPrxwevmnJs83QaLwevnyt8c3WHHoZbWc9KGuIaVLTMLZYre5t6+kZmsEjQ+dNR9C/Gehq+d2XufeedJA4qvFwTZBam3rnOlNphuCQ7cZHbnUyBwQIExgdCEgZCTVDIQMmhpiBAwMDMSECYmmE1CFKkgQPUuDaS7HctUpqdKdS7UhPQ5MqHIVOQpCQSZJEaGCQOCBmojtIiKrQwESq0ZusZuiDSq1NLRZe+YLhmq1QNlmNDRdDXK9loG4xunnC3bzulpIaVe4r2pKr+Ou3z609JtZ1mbZUdoA4FSeauxqSANyJohVW83Vlmpp0Nc6mmY25oG1KbKnKNLEu5jrr46DosQhUqGjr0yQ7UuSVlPN0RYerjpsc23ovm1xPeuG9HnrVN/K+t4tJJ4/Tng9WdLSJSzRe1z6amLwevHD6ss7XO5le7za5HRjznZy52rdPTx10saBc0dIpa407c42sRRBwIlNpIdaCD6X+K9DX87su8uxIp2nG6TMjLZDsTCtSpOxIQMhk4oIyTGE43BCQ0CBIQM2gSGEwJtwYECCIODAzEDMcl2JiBNIT0NUvQ7l6lmptEcqk4pMVS7JCVJ2pAglSkEAgBAcEAGOBQgFepDSpUrUNx2061TzHVlzvThn7xOXs829bScvfGxnoeKNFOzP2yg1na5kV8/181epr3NvPW9jqw72VyRBzX1VO4QyQM3ZzvUz1xtsKG+dWpPNXMtL2WjixOrCFSMY6QWFi72W1nO4MlL1sbtxQqijpOXvI2jRVnPS/lYLSCnTZXscuvonmaY/Sub685INCMLnevHM2VbQs5va5rmja57cni/S5sbpivSswrEmZvkIdrPWvcZ+uYqIDYdzKgVV3K7+V5m0520DQVXbx2u419AfK7bPndt7n2JA9J03Y4OCBwQnYzEm6Ex0O0kMDggTaQgcGBAwIEkxSBAyECY4MDJ
Скачать книгу
Яндекс.Метрика