Magnetic Nanoparticles in Human Health and Medicine. Группа авторовЧитать онлайн книгу.
22–32.
3 Bae, K.H., Park, M., Do, M.J. et al. (2012). Chitosan oligosaccharide‐stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6 (6): 5266–5273.
4 Baronzio, G.F. and Hager, E.D. (2006). Hyperthermia in Cancer Treatment: A Primer. Boston, MA: Springer US.
5 Bauer, L.M., Situ, S.F., Griswold, M.A., and Samia, A.C.S. (2016). High‐performance iron oxide nanoparticles for magnetic particle imaging – guided hyperthermia (hMPI). Nanoscale 8 (24): 12162–12169.
6 Bhattacharjee, H., Balabathula, P., and Wood, G.C. (2010). Targeted nanoparticulate drug‐delivery systems for treatment of solid tumors: a review. Therapeutic Delivery 1 (5): 713–734.
7 Blanco‐Andujar, C., Walter, A., Cotin, G. et al. (2016). Design of iron oxide‐based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine 11 (14): 1889–1910.
8 Bulte, J.W.M. (2019). Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Advanced Drug Delivery Reviews 138: 293–301.
9 Carrey, J., Mehdaoui, B., and Respaud, M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single‐domain nanoparticles: application to magnetic hyperthermia optimization. Journal of Applied Physics 109 (8): 083921.
10 Cavaliere, R., Ciocatto, E.C., Giovanella, B.C. et al. (1967). Selective heat sensitivity of cancer cells. Biochemical and clinical studies. Cancer 20 (9): 1351–1381.
11 Chen, R., Christiansen, M.G., and Anikeeva, P. (2013). Maximizing hysteretic losses in magnetic ferrite nanoparticles via model‐driven synthesis and materials optimization. ACS Nano 7 (10): 8990–9000.
12 Cherukuri, P., Glazer, E.S., and Curley, S.A. (2010). Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews 62 (3): 339–345.
13 Chicheł, A., Skowronek, J., Kubaszewska, M., and Kanikowski, M. (2007). Hyperthermia – description of a method and a review of clinical applications. Reports of Practical Oncology & Radiotherapy 12 (5): 267–275.
14 Colombo, M., Carregal‐Romero, S., Casula, M.F. et al. (2012). Biological applications of magnetic nanoparticles. Chemical Society Reviews 41 (11): 4306.
15 Coral, D.F., Mendoza Zélis, P., Marciello, M. et al. (2016). Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir 32 (5): 1201–1213.
16 Cypriano, J., Werckmann, J., Vargas, G. et al. (2019). Uptake and persistence of bacterial magnetite magnetosomes in a mammalian cell line: implications for medical and biotechnological applications (Y.K. Mishra, ed.). PLoS One 14 (4): e0215657.
17 Das, R., Alonso, J., Nemati Porshokouh, Z. et al. (2016). Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. The Journal of Physical Chemistry C 120 (18): 10086–10093.
18 Dias, C.S.B., Hanchuk, T.D.M., Wender, H. et al. (2017). Shape tailored magnetic nanorings for intracellular hyperthermia cancer therapy. Scientific Reports 7 (1): 14843.
19 Elsayed, W.E.M., Al‐Hazmi, F.S., Memesh, L.S., and Bronstein, L.M. (2017). A novel approach for rapid green synthesis of nearly mono‐disperse iron oxide magnetic nanocubes with remarkable surface magnetic anisotropy density for enhancing hyperthermia performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects 529: 239–245.
20 Falk, M.H. and Issels, R.D. (2001). Hyperthermia in oncology. International Journal of Hyperthermia 17 (1): 1–18.
21 Fortin, J.P., Wilhelm, C., Servais, J. et al. (2007). Size‐sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the American Chemical Society 129 (9): 2628–2635.
22 Gandia, D., Gandarias, L., Rodrigo, I. et al. (2019). Unlocking the potential of magnetotactic bacteria as magnetic hyperthermia agents. Small 15 (41): 1902626.
23 Gavilán, H., Sánchez, E.H., Brollo, M.E.F. et al. (2017). Formation mechanism of maghemite nanoflowers synthesized by a polyol‐mediated process. ACS Omega 2 (10): 7172–7184.
24 Gazeau, F., Lévy, M., and Wilhelm, C. (2008). Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3 (6): 831–844.
25 Geng, S., Yang, H., Ren, X. et al. (2016). Anisotropic magnetite nanorods for enhanced magnetic hyperthermia. Chemistry – An Asian Journal 11 (21): 2996–3000.
26 Gleich, B. and Weizenecker, J. (2005). Tomographic imaging using the nonlinear response of magnetic particles. Nature 435 (7046): 1214–1217.
27 Glöckl, G., Hergt, R., Zeisberger, M. et al. (2006). The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. Journal of Physics: Condensed Matter 18 (38): S2935–S2949.
28 Gonzales‐Weimuller, M., Zeisberger, M., and Krishnan, K.M. (2009). Size‐dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials 321 (13): 1947–1950.
29 Guardia, P., Di Corato, R., Lartigue, L. et al. (2012). Water‐soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6 (4): 3080–3091.
30 Guardia, P., Riedinger, A., Nitti, S. et al. (2014). One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate. Journal of Materials Chemistry B 2 (28): 4426.
31 Guardia, P., Nitti, S., Materia, M.E. et al. (2017). Gold–iron oxide dimers for magnetic hyperthermia: the key role of chloride ions in the synthesis to boost the heating efficiency. Journal of Materials Chemistry B 5 (24): 4587–4594.
32 Hergt, R. and Dutz, S. (2007). Magnetic particle hyperthermia – biophysical limitations of a visionary tumour therapy. Journal of Magnetism and Magnetic Materials 311 (1): 187–192.
33 Hergt, R., Hiergeist, R., Zeisberger, M. et al. (2005). Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. Journal of Magnetism and Magnetic Materials 293 (1): 80–86.
34 Hilger, I., Hergt, R., and Kaiser, W.A. (2005). Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE Proceedings: Nanobiotechnology 152 (1): 33.
35 Hugounenq, P., Levy, M., Alloyeau, D. et al. (2012). Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. The Journal of Physical Chemistry C 116 (29): 15702–15712.
36 Iacovita, C., Stiufiuc, R., Radu, T. et al. (2015). Polyethylene Glycol‐Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power. Nanoscale Research Letters 10 (1): 391.
37 Iacovita, C., Florea, A., Dudric, R. et al. (2016). Small versus large iron oxide magnetic nanoparticles: hyperthermia and cell uptake properties. Molecules 21 (10): 1357.
38 Iacovita, C., Fizesan, I., Pop, A. et al. (2020). In Vitro Intracellular Hyperthermia of Iron Oxide Magnetic Nanoparticles, Synthesized at High Temperature by a Polyol Process. Pharmaceutics 12 (5): 424.
39 Jain, R.K. and Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature Reviews. Clinical Oncology 7 (11): 653–664.
40 Jeun, M., Lee, S., Kyeong Kang, J. et al. (2012). Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine. Applied Physics Letters 100 (9): 092406.
41 Jiang, C., Leung, C.W., and Pong, P.W.T. (2016). Magnetic‐field‐assisted assembly of anisotropic superstructures by iron oxide nanoparticles and their enhanced magnetism. Nanoscale Research Letters 11 (1): 189.
42 Jordan, A., Scholz, R., Wust, P. et al. (1999). Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials 201 (1–3): 413–419.
43 Kerr, J.F.R., Winterford, C.M., and Harmon, B.V. (1994). Apoptosis. Its significance in cancer and cancer therapy. Cancer 73 (8): 2013–2026.
44 Kostopoulou, A., Velu, S.K.P.,