Renewable Energy for Sustainable Growth Assessment. Группа авторовЧитать онлайн книгу.
48. Hosseini SE, Wahid MA, Aghili N. The scenario of greenhouse gases reduction in Malaysia. Renew Sustain Energy Rev 2013. 28; 400–9.
49. Hosseini SE, Abdul Wahid M. Pollutant in palm oil production process. J Air Waste Manag Assoc 2013 (131213074436003), http://dx.doi.org/10.1080/10962247.2013.873092.
50. Yokoyama, S. The Asian Biomass Handbook. A guide for biomass production & utilization, The Japan Institute of Energy, Tokyo, 2008.
51. Bonechi, C., Consumi, M., Donati, A., Leone, G., Magnani, A., Tamasi, G., Rossi, C. Biomass: An overview, in: Dalena, F., Basile, A., Rossi, C. (eds.), Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen. Elsevier Publishing, London, 2017. 3-42.
52. Chen, H. Chemical composition and structure of natural lignocellulose, in: Chen, H. (Ed.), Biotechnology of Lignocellulose. Springer, Dordrecht, 2014. 25-71.
53. Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M.S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawsk, L., Thai, P. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017. 579; 1000-1034.
54. Bala, J.D., Lalung, J., Al-Gheethi, A.A.S., Norli, I.A Review on Biofuel and Bioresources for Environmental Applications, in: Ahmad, M., Ismail, M., Riffat, S. (eds.),
55. Renewable Energy and Sustainable Technologies for Building and Environmental Applications. Springer, Cham, 2016. 205-225.
56. Carpenter, D., Westover, T.L., Czernik, S., Jablonski, W., 2014. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 2014. 16(2); 384-406.
57. Fromm, J., Rockel, B., Lautner, S., Windeisen, E., Wanner, G. Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J. Struct. Biol. 2003. 143(1); 77-84.
58. Xu, F., Zhong, X.C., Sun, R.C., Jones, G.L.L. Lignin distribution and ultrastructure of Salix psammophila. Trans Chin. Pul Pap. 2005. 20(1); 6-9.
59. Chen, X., Khanna, M., Yeh, S., 2012. Stimulating learning-by-doing in advanced biofuels: effectiveness of alternative policies. Environ. Res. Lett. 2012. 7(4); 045907.
60. Hodásová, L., Jablonský, M., Škulcová, A., Ház, A. Lignin, potential products and their market value. Wood Res. 2015. 60(6); 973-986.
61. Wells, T., Ragauskas, A.J. On the future of lignin-derived materials, chemicals and energy. Innov. Ener. Res. 2016. 5(2); 117.
62. Xie, S., Ragauskas, A.J., Yaun, J. Lignin conversion: opportunities and challenges for the integrated biorefinery. Ind. Biotechnol. 2016. 12(3); 161-167.
63. Rana, R., Nanda, S., Meda, V., Dalai, A.K., Kozinski, J.A. A review of lignin chemistry and its biorefining conversion technologies. J. Biochem. Eng. Bioprocess. Technol. 2018. 1(2).
64. Wang, H., Tucker, M., Ji, Y. Recent development in chemical depolymerization of lignin: a review. J. Appl. Chem. 2013. Article ID 838645.
65. Welker, C.M., Balasubramanian, V.K., Petti, C., Rai, K.M., DeBolt, S., Mendu, V. Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies. 2015. 8(8); 7654-7676.
66. Laurichesse, L., Avérous, S. Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 2014. 39(7); 1266-1290.
67. Abejón, R., Pérez-Acebo, H., Clavijo, L. Alternatives for chemical and biochemical lignin valorization: hot topics from a bibliometric analysis of the research published during the 2000-2016 period. Processes. 2018. 6(8); 98.
68. Vorwerg, W., Radosta, S., Leibnitz, E. Study of a preparative-scale process for the production of amylose. Carbohydr. Polym. 2002. 47(2); 181-189.
69. Edwards, S., Chaplin, M.F., Blackwood, A.D., Dettmar, P.W. Primary structure of rabinoxylans of ispaghula husk and wheat bran. Proc. Nutr. Soc. 2003. 62(1); 217-222.
70. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., An overview of the chemical composition of biomass. Fuel. 2010. 89(5); 913-933.
71. Vassilev, S.D., Andersen, L., Vassileva, C., Morgan, T. An overview of the organic and inorganic phase composition of biomass. Fuel. 2012. 94; 1-33.
72. Vassilev, S.V., Vassileva C.G. Composition, properties and challenges of algae biomass for biofuel application: an overview. Fuel. 2016. 181; 1-33.
73. Demirbas, A., Use of algae as biofuel sources. Energy Convers. Manage. 2010. 51(12); 2738-2749.
74. Tamaki, Y., Mazza, G. Measurement of structural carbohydrates, lignins, and micro-components of straw and shives: effects of extractives, particle size and crop species. Ind. Crops Prod. 2010. 31(3); 534-541.
75. Huber, G.W., Iborra, S., Corma, A., Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 2006. 106(9); 4044-4098.
76. Mesa, L., González, E., Ruiz, E., Romero, I., Cara, C., Felissia, F., Castro, E. Preliminary evaluation of organosolv pretreatment of sugar cane bagasse for glucose production: application of 23 experimental design. Appl. Energy. 2010. 87(1); 109-114.
77. Alaswada, A., Dassisti, M., Prescotta, T., Olabia, A.G.Technologies and developments of third generation biofuel production. Renew. Sust. Energy Rev. 2015. 51; 1446-1460.
78. Werkelin, J., Skrifvars, B.J., Hupa, M. Ash-forming elements in four Scandinavian wood species. Part 1: summer harvest. Biomass Bioenergy. 2005. 29(6); 451-466.
79. Di Blasi, C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 2008. 34(1); 47-90.
80. Robert C. B. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, First Edition. John Wiley & Sons. 2011.
81. Rahimpour, M.R., Arab Aboosadi, Z., Jahanmiri, A.H. Synthesis gas production in a novel hydrogen and oxygen perm-selective membranes tri-reformer for methanol production. J. Nat. Gas Sci. Eng. 2012. 9; 149-159.
82. Mariod, A.A., Extraction, Purification, and Modification of Natural Polymers, in: Olatunji, O. (ed.), Natural Polymers. Springer, Cham, 2016. 63-91.
83. Roos, C.J. Clean Heat and Power Using Biomass Gasification for Industrial and Agricultural Projects, U.S. Department of Energy. 2010.
84. Shen, D.K., Xiao, R., Gu, S., Luo, K.H.The pyrolytic behavior of cellulose in lignocellulosic biomass: a review. RSC Adv. 2011. 1(9); 1641-1660.
85. Zhang, J., Weng, X., Han, Y., Li, W., Gan, Z., Gu, J. Effect of supercritical water on the stability and activity of alkaline carbonate catalysts in coal gasification. J. Energy Chem. 2013. 22(3); 459-467.
86. López Barreiro, D., Prins, W., Ronsse, F., Brilman, W. Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass and Bioenergy. 2013. 53; 113-127.
87. Gollakota, A.R.K., Kishore, N., Gu, S. A review on hydrothermal liquefaction of biomass. Renew. Sust. Energy Rev. 2018. 81; 1378-1392.
88. Mahalaxmi, S., Williford, C. Biochemical conversion of biomass to fuels, in: Chen, W., Suzuki, T., Lackner, M. (eds.), Handbook of climate change mitigation and adaptation. Springer, New York, 2014. 1-28.
89. Brethauer, S., Studer, M.H. Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals-a review. Chimia. 2015. 69(10); 572-581.
90. Zamani, A. Introduction to lignocellulose-based products, in: Karimi, K. (ed.), Lignocellulose-Based Bioproducts. Springer,