Эротические рассказы

Renewable Energy for Sustainable Growth Assessment. Группа авторовЧитать онлайн книгу.

Renewable Energy for Sustainable Growth Assessment - Группа авторов


Скачать книгу
Sharma, V.K. Technology development and innovation for production of next-ge neration biofuel from lignocellulosic wastes, in: Sharma, A., Kar, S. (eds.), Energy sustainability through green energy. Green Energy Technology. Springer, New Delhi, 2015. 315-350.

      92. Sreekrishnan, T.R., Kohli, S., Rana, V. Enhancement of biogas production from solid substrates using different techniquesa review. Bioresour. Technol. 2004. 95(1); 1-10.

      93. Horan, N.J. Introduction, in: Horan, N., Yaser, A., Wid, N. (eds.), Anaerobic Digestion Processes. Green Energy and Technology. Springer, Singapore. 2018. 1-7.

      94. Strezov, V., Properties of biomass fuels, in: Strezov, V., Evans, T.J. (eds.), Biomass processing technologies. CRC Press, Boca Raton. 2014. 1-32.

      96. Leung, D.Y.C., Wu, X., Leung, M.K.H. A review on biodiesel production using catalyzed transesterification. Appl. Energy. 2010. 87(4); 1083-1095.

      97. https://ourworldindata.org/grapher/biofuel-production?tab=chart&country=MEX~DEU~BRA~USA~GBR~IND~CHN (accesed 05-04-2021)

      98. Canakci, M., Van Gerpen, J.H. Biodiesel production via acid catalysis. Transactions of the ASAE. 1999. 42(5); 1203-1210.

      99. Perea-Moreno, M., Samerón-Manzano, E. and Perea-Moreno, A. Biomass as Renewable Energy: Worldwide Research Trends. Sustainability. 2019. 11; 863-882.

      100. Hosseini SE, Wahid MA, Abuelnuor AAA. Biogas flameless combustion: a review. Appl Mech Mater 2013. 388; 273–9.

      101. Wünning JA, Wünning JG. Flameless oxidation to reduce thermal noformation. Prog Energy Combust Sci 1997. 23; 81–94.

      102. Katsuki M, Hasegawa T. The science and technology of combustion in highly preheated air. Symp Combust 1998. 27; 3135-46.

      103. Cavaliere A, de Joannon M. Mild Combustion. Prog Energy Combust Sci 2004. 30; 329-66.

      104. AK G, S B,T H. Effect of air preheat temperature and oxygen concentration on flame structure and emission. J Energy Resour Technol ASME 1999. 121; 209-16.

      105. Tsuji H. High Temperature Air Combustion: From Energy Conservation to Pollution Reduction, USA: CRC: Boca Raton Florida; 2003.4.

      106. Hosseini SE, Wahid Ma, Salehirad S. Environmental protection and fuel consumption reduction by flameless combustion technology: a review. Appl Mech Mater 2013.388;292-7.

      107. Hosseini SE, Wahid MA. Biogas utilization: experimental investigation on biogas flameless combustion in lab-scale furnace. Energy Convers Manag 2013.74; 426-32.

      108. Deraedt W, Ceulemans R. Clonal variability in biomass production and conversion efficiency of poplar during the establishment year of a short rotation coppice plantation. Biomass Bioenergy 1998.15;391.

      109. Míguez JL, Morán JC, Granada E, Porteiro J. Review of technology in small-scale biomass combustion systems in the European market. Renew Sustain Energy Rev 2012.16;3867-75.

      110. Nussbaumer T. Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 2003;17:1510-21.

      111. Demirbas A. Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 2004.30; 219-30.

      112. Hosseini SE, Salehirad S, Wahid MA, Sies MM, Saat A. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion. Proceesings of the 4th international meeting on advances in Thermofluids (IMAT 2011), vol. 1440. AIP Publishing; 2012. 1309-12.

      113. Suda T, Takafuji M, Hirata T, Yoshino M, Sato J. A study of combustion behavior of pulverized coal in high-temperature air. Proc Combust Inst 2002.29; 503-9.

      114. Weber R, Smart J. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proc Combust Inst 2005. 30; 2623-9.

      115. Ramona D. Wood pellets combustion with rich and diluted air in HTAC furnace; 2006.

      116. Demirbas A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 2004.72; 243-8.

      117. Demirbaş A. Biomass and wastes: upgrading alternative fuels. Energy Sources 2003.25;317–29.

      118. Zhang H, Yue G, Lu J, Jia Z, Mao J. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers. Proceedings of the Combustion Institute 2007.31; 2779–85.

      120. Lasseter, R.H., “Microgrid. A conceptual solution”, IEEE Annual Power Electronics Specialists Conference, Madison, WI, USA. 2004. 6; 4285-4290.

      121. Nayar, C.V., Lawrance, W.B., Phillips, S.J. Solar/wind/diesel hybrid energy systems for remote areas, Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, 1989. 4; 2029-2034.

      122. S.S. Choi, R. Larkin., “Performance of an autonomous dieselwind turbine power system”, Electric Power Systems Research, 1995.33; 87-99.

      123. J. G. McGowan, J. F. Manweli, and C. Avelar, C. L. Warner. Hybrid wind/PV/diesel hybrid power systems modeling and south American applications”, WREC, 1996. 836-847.

      124. P. S. Dokopoulos A. C. Saramourtsis A. G. Bakirtzis, Prediction and evaluation of the performance of wind-diesel energy systems. IEEE Transactions on Energy Conversion. 1996. 11-2; 385-393.

      125. Wichert, B. PV/diesel hybrid energy systems for remote area power generations-a review of current practices and future developments. Renewable and Sustainable Energy Reviews. 1997. 1-3; 209-228.

      126. M.A. Elhadidy, S.M. Shaahid. Decentralized/stand-alone hybrid wind–diesel power systems to meet residential loads of hot coastal regions. Energy Conversion and Management. 2005. 46; 2501–2513.

      127. D. Saheb-Koussa, M. Haddadi, M. Belhame. Economic and technical study of a hybrid system (wind–photovoltaic–diesel) for rural electrification in Algeria. Applied Energy. 2009. 86; 1024–1030.

      128. Rachid Belfkira, Lu Zhang, Georges Barakat. Optimal sizing study of hybrid wind/PV/diesel power generation unit. Solar Energy. 2011. 85; 100–110.

      129. R. W. Wies, R. A. Johnson, A. N. Agrawal, T. J. Chubb. Economic analysis and environmental impacts of a PV with diesel-battery system for remote villages. IEEE Power. Engineering Society General Meeting. 2004. 2; 1898 -1905.

      130. Pedro Rosa, Wellington Lemos, Alexandre Pereira, Renato Barros and Everaldo Feitosa. Problems of planning hybrid wind-diesel power systems. IEEE Transmission & Distribution Conference, Latin America. 2004. 617-622.

      131. M.A. Elhadidy. Performance evaluation of hybrid (wind/solar/diesel) power systems. Renewable Energy. 2002. 26; 401–413.

      132. Richard W. Wies, Ron A. Johnson, Ashish N. Agrawal, and Tyler J. Chubb., “Simulink model for economic analysis and environmental impacts of a PV with diesel-battery system for remote villages, IEEE Transactions on power systems. 2005. 20(2); 692.

      133. Raquel S. Garciaa, Daniel Weisser. A wind–diesel system with hydrogen storage. Joint optimization of design and dispatch. Renewable Energy. 2006. 31; 2296–2320.

      134. Shaahid, S.M. and Elhadidy, M.A. Technical and economic assessment of grid-independent hybrid photovoltaic/diesel/battery power systems for commercial loads in desert environments. Renewable and Sustainable Energy Reviews, 2007. 11-8; 1794-1810.


Скачать книгу
Яндекс.Метрика