Эротические рассказы

Flexible Supercapacitors. Группа авторовЧитать онлайн книгу.

Flexible Supercapacitors - Группа авторов


Скачать книгу
in response to NO2 gas and UV light of MWCNT/SnO2 hybrid sensor. The UV sensitivity was unchanged under a strain between 0% and 50%. All the results obtained in this paper suggested the fabricated stretchable multifunctional integrated sensing system can be used as next‐generation body‐attached healthcare and environmental sensor devices for continuous nondestructive monitoring.

Schematic illustrations of (a, b) 2D multifunctional integrated system, containing a RF power receiver, a MSC array, strain sensor, and UV/NO2 gas sensor. (c, d) Photograph of integrated system attached to human body. (e) Charge/discharge curve of integrated system powered by RF power source. (f) Carotid pulse curve of the strain sensor. (g) NO2 gas response at strain of 0%, 20%, 50%. (h) UV detection under 0% and 50% strain with exposure of 312 nm.

      Source: Reproduced with permission [106]. © 2015, Wiley‐VCH.

      2.3.4 Perspective

      As a new member of the SC family, stretchable devices have been greatly developed in the past few years, buoyed by the portable and wearable electronics, which need a stretchable energy storage to form a complete and safe system to monitor electrical and biomedical signal generated by human activities, thus achieving the practical application of wearable electronics in the field of biomimetic E‐skins, interactive human‐machine interface, “big health” and “big data.” In this review, we systematically summarize the recent progress in stretchable SCs from the perspective of the three dimension and corresponding configuration of the stretchable device, as well as the fabrication process and strategies toward the stretchable SCs. The stretchable integrated system is also concluded in this chapter, all of them realized stable response to the physical and bio‐signal under different stretching or deformations when attached to the human body, showing potential for wearable electronics.

      1 1 Li, Lou, Z., Chen, D. et al. (2018). Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 14 (43): e1702829.

      2 2 Lee, G., Kim, D., Kim, D. et al. (2015). Fabrication of a stretchable and patchable array of high performance micro‐supercapacitors using a non‐aqueous solvent based gel electrolyte. Energy Environ. Sci. 8 (6): 1764–1774.

      3 3 Hu, H., Pei, Z., and Ye, C. (2015). Recent advances in designing and fabrication of planar micro‐supercapacitors for on‐chip energy storage. Energy Storage Mater. 1: 82–102.

      4 4 Li, L., Wu, Z., Yuan, S. et al. (2014). Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7 (7): 2101–2122.

      5 5 Chu, X., Zhang, H., Su, H. et al. (2018). A novel stretchable supercapacitor electrode with high linear capacitance. Chem. Eng. J. 349: 168–175.

      6 6 Xu, J., Wu, H., Lu, L. et al. (2014). Integrated photo‐supercapacitor based on Bi‐polar TiO2 nanotube arrays with selective one‐side plasma‐assisted hydrogenation. Adv. Funct. Mater. 24 (13): 1840–1846.

      7 7 Chen, X., Lin, H., Chen, P. et al. (2014). Smart, stretchable supercapacitors. Adv. Mater. 26 (26): 4444–4449.

      8 8 Huang, Y., Liang, J., and Chen, Y. (2012). An overview of the applications of graphene‐based materials in supercapacitors. Small 8 (12): 1805–1834.

      9 9 Zheng, Y., Yang, Y., Chen, S. et al. (2016). Smart, stretchable and wearable supercapacitors: prospects and challenges. CrystEngComm 18 (23): 4218–4235.

      10 10 Senthilkumar, B., Vijaya, S.K., Sanjeeviraja, C. et al. (2013). Synthesis and physico‐chemical property evaluation of PANI–NiFe2O4 nanocomposite as electrodes for supercapacitors. J. Alloys Compd. 553: 350–357.

      11 11 Mahmood, Q., Park, S.K., Kwon, K.D. et al. (2016). Transition from diffusion‐controlled intercalation into extrinsically pseudocapacitive charge storage of MoS2 by nanoscale heterostructuring. Adv. Energy Mater. 6 (1): n/a‐n/a.

      12 12 Hsia, B., Marschewski, J., Wang, S. et al. (2014). Highly flexible, all `solid‐state micro‐supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 25 (5): 055401.

      13 13 An, C.H., Wang, Y.J., Huang, Y.N. et al. (2014). Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique. Nano Energy 10: 125–134.

      14 14 Wu, H., Jiang, K., Gu, S. et al. (2015). Two‐dimensional Ni(OH)2 nanoplates for flexible on‐chip microsupercapacitors. Nano Res. 8 (11): 3544–3552.

      15 15 Yu, Z.‐Y., Chen, L.‐F., and Yu, S.‐H. (2014). Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J. Mater. Chem. A 2 (28): 10889.

      16 16 Li, L., Lou, Z., Han, W. et al. (2016). Flexible in‐plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications. Nanoscale 8 (32): 14986–14991.

      17 17 Ai, Y., Lou, Z., Li, L. et al. (2016). Meters‐long flexible CoNiO2‐nanowires@carbon‐fibers based wire‐supercapacitors for wearable electronics. Adv. Mater. Technol. 1 (8): 1600142.

      18 18 Zhao, X., Zheng, B., Huang, T. et al. (2015). Graphene‐based single fiber supercapacitor with a coaxial structure. Nanoscale 7 (21): 9399–9404.

      19 19 Wu, Z.S., Parvez, K., Feng, X. et al. (2013). Graphene‐based in‐plane micro‐supercapacitors with high power and energy


Скачать книгу
Яндекс.Метрика