Эротические рассказы

Flexible Supercapacitors. Группа авторовЧитать онлайн книгу.

Flexible Supercapacitors - Группа авторов


Скачать книгу
Natl. Sci. Rev. 1 (2): 277–292.

      21 21 Liu, T., Zhang, F., Song, Y. et al. (2017). Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5 (34): 17705–17733.

      22 22 Beidaghi, M. and Wang, C. (2012). Micro‐supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22 (21): 4501–4510.

      23 23 Yan, C. and Lee, P.S. (2014). Stretchable energy storage and conversion devices. Small 10 (17): 3443–3460.

      24 24 Qi, D., Liu, Z., Liu, Y. et al. (2015). Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv. Mater. 27 (37): 5559–5566.

      25 25 Yun, J., Lim, Y., Jang, G.N. et al. (2016). Stretchable patterned graphene gas sensor driven by integrated micro‐supercapacitor array. Nano Energy 19: 401–414.

      26 26 Núñez, C.G., Navaraj, W.T., Polat, E.O. et al. (2017). Energy‐autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27 (18): 1606287.

      27 27 Liu, Z., Qi, D., Guo, P. et al. (2015). Thickness‐gradient films for high gauge factor stretchable strain sensors. Adv. Mater. 27 (40): 6230–6237.

      28 28 Huang, Y., Huang, Y., Zhu, M. et al. (2015). Magnetic‐assisted, self‐healable, yarn‐based supercapacitor. ACS Nano 9 (6): 6242–6251.

      29 29 Chen, S., Lou, Z., Chen, D. et al. (2016). Polymer‐enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv. Mater. Technol. 1 (7): 1600136.

      30 30 Wang, K., Zhang, X., Li, C. et al. (2015). Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv. Mater. 27 (45): 7451–7457.

      31 31 Huang, Y., Zhong, M., Huang, Y. et al. (2015). A self‐healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6: 10310.

      32 32 Huang, Y., Zhong, M., Shi, F. et al. (2017). An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem. Int. Ed. Engl. 56 (31): 9141–9145.

      33 33 Zhang, X., Zhang, H., Lin, Z. et al. (2016). Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci. China Mater. 59 (6): 475–494.

      34 34 An, T. and Cheng, W. (2018). Recent progress in stretchable supercapacitors. J. Mater. Chem. A 6 (32): 15478–15494.

      35 35 Xu, P., Gu, T., Cao, Z. et al. (2014). Carbon nanotube fiber based stretchable wire‐shaped supercapacitors. Adv. Energy Mater. 4 (3): 1300759.

      36 36 Yang, Z., Deng, J., Chen, X. et al. (2013). A highly stretchable, fiber‐shaped supercapacitor. Angew. Chem. Int. Ed. Engl. 52 (50): 13453–13457.

      37 37 Niu, Z., Dong, H., Zhu, B. et al. (2013). Highly stretchable, integrated supercapacitors based on single‐walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 25 (7): 1058–1064.

      38 38 Kim, H., Yoon, J., Lee, G. et al. (2016). Encapsulated, high‐performance, stretchable array of stacked planar micro‐supercapacitors as waterproof wearable energy storage devices. ACS Appl. Mater. Interfaces 8 (25): 16016–16025.

      39 39 Kim, D., Shin, G., Kang, Y.J. et al. (2013). Fabrication of a stretchable solid‐state micro‐supercapacitor array. ACS Nano 7 (9): 7975–7982.

      40 40 He, S., Cao, J., Xie, S. et al. (2016). Stretchable supercapacitor based on a cellular structure. J. Mater. Chem. A 4 (26): 10124–10129.

      41 41 Lv, Z., Luo, Y., Tang, Y. et al. (2018). Editable supercapacitors with customizable stretchability based on mechanically strengthened Ultralong MnO2 nanowire composite. Adv. Mater. 30 (2).

      42 42 Xu, J., Ku, Z., Zhang, Y. et al. (2016). Integrated photo‐supercapacitor based on PEDOT modified printable perovskite solar cell. Adv. Mater. Technol. 1 (5): 1600074.

      43 43 Sun, H., Zhang, Y., Zhang, J. et al. (2017). Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2 (6): 17023.

      44 44 Le, V.T., Kim, H., Ghosh, A. et al. (2013). Coaxial fiber supercapacitor using all‐carbon material electrodes. ACS Nano 7 (7): 5940–5947.

      45 45 Xiao, X., Li, T., Yang, P. et al. (2012). Fiber‐based all‐solid‐state flexible supercapacitors for self‐powered systems. ACS Nano 6 (10): 9200–9206.

      46 46 Li, P., Jin, Z., Peng, L. et al. (2018). Stretchable all‐gel‐state fiber‐shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater. 30 (18): e1800124.

      47 47 Liu, B., Liu, B., Wang, X. et al. (2014). Constructing optimized wire electrodes for fiber supercapacitors. Nano Energy 10: 99–107.

      48 48 Ren, J., Li, L., Chen, C. et al. (2013). Twisting carbon nanotube fibers for both wire‐shaped micro‐supercapacitor and micro‐battery. Adv. Mater. 25 (8): 1155–1159, 1224.

      49 49 Kou, L., Huang, T., Zheng, B. et al. (2014). Coaxial wet‐spun yarn supercapacitors for high‐energy density and safe wearable electronics. Nat. Commun. 5: 3754.

      50 50 Wang, Q., Wang, X., Xu, J. et al. (2014). Flexible coaxial‐type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8: 44–51.

      51 51 Chen, X., Qiu, L., Ren, J. et al. (2013). Novel electric double‐layer capacitor with a coaxial fiber structure. Adv. Mater. 25 (44): 6436–6441.

      52 52 Li, L., Lou, Z., Chen, D. et al. (2018). Hollow polypyrrole sleeve based coaxial fiber supercapacitors for wearable integrated Photosensing system. Adv. Mater. Technol. 3 (8): 1800115.

      53 53 Wang, H., Wang, C., Jian, M. et al. (2018). Superelastic wire‐shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Res. 11 (5): 2347–2356.

      54 54 Ren, J., Xu, Q., and Li, Y.‐G. (2018). Flexible fiber‐shaped energy storage devices: principles, progress, applications and challenges. Flex. Print. Electron. 3 (1): 013001.

      55 55 Choi, C., Kim, S.H., Sim, H.J. et al. (2015). Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid‐state supercapacitors. Sci. Rep. 5: 9387.

      56 56 Li, M., Zu, M., Yu, J. et al. (2017). Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small 13 (12).

      57 57 Choi, C., Lee, J.M., Kim, S.H. et al. (2016). Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16 (12): 7677–7684.

      58 58 Chen, T., Hao, R., Peng, H. et al. (2015). High‐performance, stretchable, wire‐shaped supercapacitors. Angew. Chem. Int. Ed. Engl. 54 (2): 618–622.

      59 59 Zhang, Q., Sun, J., Pan, Z. et al. (2017). Stretchable fiber‐shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 39: 219–228.

      60 60 Yu, J., Lu, W., Smith, J.P. et al. (2017). A high performance stretchable asymmetric fiber‐shaped supercapacitor with a core‐sheath helical structure. Adv. Energy Mater. 7 (3): 1600976.

      61 61 Yun, J., Kim, D., Lee, G. et al. (2014). All‐solid‐state flexible micro‐supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon 79: 156–164.

      62 62 Gu, S., Lou, Z., Li, L. et al. (2015). Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on‐chip micro‐supercapacitors for integrated photodetecting applications. Nano Res. 9 (2): 424–434.

      63 63 Lv, T., Yao, Y., Li, N. et al. (2016). Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites. Angew. Chem. Int. Ed. Engl. 55 (32): 9191–9195.

      64 64 Yu, C., Masarapu, C., Rong, J. et al. (2009). Stretchable supercapacitors based on buckled single‐walled carbon‐nanotube macrofilms. Adv. Mater. 21 (47): 4793–4797.

      65 65 Xie, Y., Liu, Y., Zhao, Y. et al. (2014). Stretchable all‐solid‐state supercapacitor with wavy


Скачать книгу
Яндекс.Метрика