Drug Transporters. Группа авторовЧитать онлайн книгу.
J, Tsuda M, Katsura T, Inui K. Molecular cloning, functional characterization and tissue distribution of rat H+/organic cation antiporter MATE1. Pharm Res 2006; 23 (8):1696–1701.
17 [17] Ohta KY, Inoue K, Hayashi Y, Yuasa H. Molecular identification and functional characterization of rat multidrug and toxin extrusion type transporter 1 as an organic cation/H+ antiporter in the kidney. Drug Metab Dispos 2006; 34 (11):1868–1874.
18 [18] Uchida Y, Toyohara T, Ohtsuki S, Moriyama Y, Abe T, Terasaki T. Quantitative targeted absolute proteomics for 28 transporters in brush‐border and basolateral membrane fractions of rat kidney. J Pharm Sci 2016; 105 (2):1011–1016.
19 [19] Wang L, Prasad B, Salphati L, Chu X, Gupta A, Hop CE, Evers R, Unadkat JD. Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metab Dispos 2015; 43 (3):367–374.
20 [20] Zhang X, Cherrington NJ, Wright SH. Molecular identification and functional characterization of rabbit MATE1 and MATE2‐K. Am J Physiol Renal Physiol 2007; 293 (1):F360–F370.
21 [21] Komatsu T, Hiasa M, Miyaji T, Kanamoto T, Matsumoto T, Otsuka M, Moriyama Y, Omote H. Characterization of the human MATE2 proton‐coupled polyspecific organic cation exporter. Int J Biochem Cell Biol 2011; 43 (6):913–918.
22 [22] Hiasa M, Matsumoto T, Komatsu T, Omote H, Moriyama Y. Functional characterization of testis‐specific rodent multidrug and toxic compound extrusion 2, a class III MATE‐type polyspecific H+/organic cation exporter. Am J Physiol Cell Physiol 2007; 293 (5):C1437–C1444.
23 [23] Motohashi H, Inui K. Multidrug and toxin extrusion family SLC47: physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2‐K. Mol Aspects Med 2013; 34 (2–3):661–668.
24 [24] Martínez‐Guerrero LJ, Evans KK, Dantzler WH, Wright SH. The multidrug transporter MATE1 sequesters OCs within an intracellular compartment that has no influence on OC secretion in renal proximal tubules. Am J Physiol Renal Physiol 2016; 310 (1):F57–F67.
25 [25] Dangprapai Y, Wright SH. Interaction of H+ with the extracellular and intracellular aspects of hMATE1. Am J Physiol Renal Physiol 2011; 301 (3):F520–F528.
26 [26] Tsuda M, Terada T, Asaka J, Ueba M, Katsura T, Inui K. Oppositely directed H+ gradient functions as a driving force of rat H+/organic cation antiporter MATE1. Am J Physiol Renal Physiol 2007; 292 (2):F593–F598.
27 [27] Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K. Substrate specificity of MATE1 and MATE2‐K, human multidrug and toxin extrusions/H(+)‐organic cation antiporters. Biochem Pharmacol 2007; 74 (2):359–371.
28 [28] Watanabe S, Tsuda M, Terada T, Katsura T, Inui K. Reduced renal clearance of a zwitterionic substrate cephalexin in MATE1‐deficient mice. J Pharmacol Exp Ther 2010; 334 (2):651–656.
29 [29] Ohta KY, Inoue K, Yasujima T, Ishimaru M, Yuasa H. Functional characteristics of two human MATE transporters: kinetics of cimetidine transport and profiles of inhibition by various compounds. J Pharm Pharm Sci 2009; 12 (3):388–396.
30 [30] König J, Zolk O, Singer K, Hoffmann C, Fromm MF. Double‐transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: determinants of uptake and transcellular translocation of organic cations. Br J Pharmacol 2011; 163 (3):546–555.
31 [31] Sato T, Masuda S, Yonezawa A, Tanihara Y, Katsura T, Inui K. Transcellular transport of organic cations in double‐transfected MDCK cells expressing human organic cation transporters hOCT1/hMATE1 and hOCT2/hMATE1. Biochem Pharmacol 2008; 76 (7):894–903.
32 [32] Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui K. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol 2009; 75 (6):1280–1286.
33 [33] Li Q, Peng X, Yang H, Wang H, Shu Y. Deficiency of multidrug and toxin extrusion 1 enhances renal accumulation of paraquat and deteriorates kidney injury in mice. Mol Pharm 2011; 8 (6):2476–2483.
34 [34] Hume WE, Shingaki T, Takashima T, Hashizume Y, Okauchi T, Katayama Y, Hayashinaka E, Wada Y, Kusuhara H, Sugiyama Y, Watanabe Y. The synthesis and biodistribution of [(11)C]metformin as a PET probe to study hepatobiliary transport mediated by the multi‐drug and toxin extrusion transporter 1 (MATE1) in vivo. Bioorg Med Chem 2013; 21 (24):7584–7590.
35 [35] Shingaki T, Hume WE, Takashima T, Katayama Y, Okauchi T, Hayashinaka E, Wada Y, Cui Y, Kusuhara H, Sugiyama Y, Watanabe Y. Quantitative evaluation of mMate1 function based on minimally invasive measurement of tissue concentration using PET with [(11)C]Metformin in mouse. Pharm Res 2015; 32 (8):2538–2547.
36 [36] Toyama K, Yonezawa A, Masuda S, Osawa R, Hosokawa M, Fujimoto S, Inagaki N, Inui K, Katsura T. Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin‐induced lactic acidosis. Br J Pharmacol 2012; 166 (3):1183–1191.
37 [37] Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, Inui K. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent‐induced nephrotoxicity. Biochem Pharmacol 2007; 74 (3):477–487.
38 [38] Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1‐3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther 2006; 319 (2):879–886.
39 [39] Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui K. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin‐induced nephrotoxicity. Biochem Pharmacol 2010; 80 (11):1762–1767.
40 [40] Fujita S, Hirota T, Sakiyama R, Baba M, Ieiri I. Identification of drug transporters contributing to oxaliplatin‐induced peripheral neuropathy. J Neurochem 2019; 148 (3):373–385.
41 [41] Jensen O, Rafehi M, Tzvetkov MV, Brockmöller J. Stereoselective cell uptake of adrenergic agonists and antagonists by organic cation transporters. Biochem Pharmacol 2020; 171:113731.
42 [42] Misaka S, Knop J, Singer K, Hoier E, Keiser M, Müller F, Glaeser H, König J, Fromm MF. The nonmetabolized β‐blocker nadolol is a substrate of OCT1, OCT2, MATE1, MATE2‐K, and P‐glycoprotein, but Not of OATP1B1 and OATP1B3. Mol Pharm 2016; 13 (2):512–519.
43 [43] Yin J, Duan H, Shirasaka Y, Prasad B, Wang J. Atenolol renal secretion is mediated by human organic cation transporter 2 and multidrug and toxin extrusion proteins. Drug Metab Dispos 2015; 43 (12):1872–1881.
44 [44] Chen J, Brockmöller J, Seitz T, König J, Chen X, Tzvetkov MV. Tropane alkaloids as substrates and inhibitors of human organic cation transporters of the SLC22 (OCT) and the SLC47 (MATE) families. Biol Chem 2017; 398 (2):237–249.
45 [45] Deutsch B, Neumeister C, Schwantes U, Fromm MF, König J. Interplay of the Organic Cation Transporters OCT1 and OCT2 with the apically localized export protein MATE1 for the polarized transport of trospium. Mol Pharm 2019; 16 (2):510–517.
46 [46] Chan BS, Seale JP, Duggin GG. The mechanism of excretion of paraquat in rats. Toxicol Lett 1997; 90 (1):1–9.
47 [47] Chen Y, Zhang S, Sorani M, Giacomini KM. Transport of paraquat by human organic cation transporters and multidrug and toxic compound extrusion family. J Pharmacol Exp Ther. 2007; 322 (2):695–700.
48 [48] Kawasaki T, Matsumoto T, Iwai Y, Kawakami M, Juge N, Omote H, Nabekura T, Moriyama Y. Purification and reconstitution of polyspecific H(+)/organic cation antiporter human MATE1. Biochim Biophys Acta Biomembr 2018; 1860 (11):2456–64.
49 [49] Chedik L, Bruyere A, Le Vee M, Stieger B, Denizot C, Parmentier Y, Potin S, Fardel O. Inhibition of human drug transporter activities by the pyrethroid pesticides allethrin and tetramethrin. PLoS One 2017; 12 (1):e0169480.
50 [50] Miyake T, Mizuno T, Takehara I, Mochizuki T, Kimura M, Matsuki S, Irie S, Watanabe N, Kato Y, Ieiri I, Maeda K, Ando O, Kusuhara H. Elucidation of N (1)‐methyladenosine as a potential surrogate biomarker for drug interaction studies involving renal organic cation transporters. Drug Metab Dispos 2019; 47 (11):1270–1280.
51 [51] Kajiwara M, Ban T, Matsubara K, Nakanishi Y, Masuda S. Urinary dopamine as a potential