Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния. Дэвид СамптерЧитать онлайн книгу.
очень часто. Если же брать кубики, то 0:0 встречается столько же раз, как и 5:5. Однако в гистограмме ноль голов в одной игре почти в двадцать раз вероятнее, чем десять. Эта модель не работает. Футбольные игры – не случайный бросок кубиков.
Но матчи в футболе случайны в том или ином отношении. Непредсказуемость делает футбол и другие командные виды спорта интересными. Если во время просмотра матча вы отвлеклись на несколько секунд, вы можете пропустить важную атаку и внезапный гол. Мне, как моделисту, это сообщает кое-что важное. Гол может случиться в любую минуту матча. Несмотря на всевозможные факторы, определяющие количество голов, голевые моменты более или менее случайны.
Мы можем превратить это утверждение в симуляцию. Представим футбольную игру как девяносто одноминутных отрезков, в каждом из которых гол в равной степени возможен. При среднем 2,79 гола за игру вероятность забитого мяча в любом из этих отрезков равна 2,79/90 = 0,031. Это означает, что наш шанс увидеть гол в любую случайно выбранную минуту составляет примерно 1 к 32. Не такой уж и большой, но достаточный для того, чтобы вы продолжали смотреть.
Используя эту модель, мы можем запустить компьютерное моделирование на 90 минут, где в каждой имитируемой минуте гол будет забит с вероятностью 0,031. Если мы проведем симуляцию множества матчей, мы сможем узнать, как выглядит типичный сезон. Такой симулированный сезон показан на рисунке 1.2 как сплошная линия, наложенная на гистограмму реального сезона Премьер-лиги-2012/13.
Модель показала хорошее соответствие с реальностью. Не забывайте всю сложность игры. Тренер, который кричит у кромки поля. Фанаты, пытающиеся подбодрить команду или (чаще всего) доказывающие, насколько она никчемна. Мысли в головах игроков, когда они говорят себе, что вот он, шанс забить. Кажется, будто ни один из этих факторов не влияет на распределение забитых голов. Однако на самом деле все эти факторы вместе и порождают тип случайности, допущенный в модели.
Сплошная линия на рисунке 1.2, созданная моей симуляцией, известна как распределение Пуассона. Такое распределение возникает, когда время предыдущих событий не влияет на будущие события. Это именно то,
Рисунок 1.2. Гистограмма количества голов, забитых в сезоне-2012/13 английской Премьер-лиги (столбцы), в сравнении с распределением Пуассона (сплошная линия).
что я предположил в своей симуляции, и это то, что на самом деле происходит в футболе: ни количество забитых голов, ни количество времени не влияют на вероятность того, что будет забит еще один мяч. Полученное распределение Пуассона отражает общую форму гистограммы количества голов[4]. События делают каждую минуту футбольного матча непредсказуемой, отсюда и появляется такое распределение. Это закономерность, которая возникает из абсолютной случайности.
Я не хотел рассматривать Премьер-лигу, потому что заранее знал о ее соответствии распределению Пуассона. Так получилось, что я все-таки остановился на футболе. Я мог бы выбрать любой
4
Модель хорошо подходит, но все же есть некоторые отличия между реальностью и созданной моделью. Статистика хи-квадрат основана на