Phytopharmaceuticals. Группа авторовЧитать онлайн книгу.
gum on sorption properties and physical stability of fish oil alginate beads prepared by ionic gelation. Food Chem., 250, 75–82, 2018.
69. Código Alimentario Argentino. ANMAT. Artículo 680 - (Resolución Conjunta SPReI y SAV N° 4-E/2018). Available at: https://www.argentina.gob.ar/anmat/codigoalimentario.
70. Lin, L., Allemekinders, H., Dansby, A., Campbell, L., Durance-Tod, S., Berger, A., Jones, P.J., Evidence of health benefits of canola oil. Nutr. Rev., 71, 370–385, 2013.
71. Kajla, P., Sharma, A., Sood, D.R., Flaxseed—A potential functional food source. J. Food Sci. Technol., 52, 1857–1871, 2015.
72. Sun-Waterhouse, D., Zhou, J., Miskelly, G.M., Wibisono, R., Wadhwa, S.S., Stability of encapsulated olive oil in the presence of caffeic acid. Food Chem., 126, 3, 1049–1056, 2011.
73. Ixtaina, V.Y., Martínez, M.L., Spotorno, V., Mateo, C.M., Maestri, D.M., Diehl, B.W.K., Nolasco, S.M., Tomás, M.C., Characterization of chia seed oils obtained by pressing and solvent extraction. J. Food Compos. Anal., 24, 2, 166–174, 2011.
74. Dreher, M.L. and Davenport, A.J., Hass Avocado Composition and Potential Health Effects. Crit. Rev. Food Sci. Nutr., 53, 738–750, 2013.
75. Anwar, F. and Bhanger, M.I., Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J. Agric. Food Chem., 51, 6558–6563, 2003.
76. Kaur, G., Alam, M.S., Jabbar, Z., Javed, K., Athar, M., Evaluation of antioxidant activity of Cassia siamea flowers. J. Ethnopharmacol., 108, 3, 340–348, 2006.
77. Kumar, N., Bhandari, P., Singh, B., Bari, S.S., Antioxidant activity and ultra-performance lc-electrospray ionization-quadrupole time-of-flight mass spectrometry for phenolics-based fingerprinting of rose species: Rosa damascena, Rosa bourboniana and Rosa brunonii. Food Chem. Toxicol., 47, 361–367, 2009.
78. Schieber, A., Mihalev, K., Berardini, N., Mollov, P., Carle, R., Flavonol glycosides from distilled petals of Rosa damascena Mill. Z. Naturforsch. C, 60, 5–6, 2005.
79. Mlcek, J. and Rop, O., Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol., 22, 561–569, 2011.
80. Bungihan, M.E. and Matias, C.A., Determination of antioxidant, phytochemical and antibacterial profiles of flowers from selected ornamental plants in Nueva Vizcaya, Philippines. J. Agric. Sci. Technol., 3, 833–841, 2013.
81. Uggla, M., Gustavsson, K.-E., Olsson, M.E., Nybom, H., Changes in colour and sugar content in rose hips (Rosa dumalis L. and R. rubiginosa L.) during ripening. J. Hortic. Sci. Biotechnol., 80, 204–208, 2005.
82. Ercisli, S., Chemical Composition of Fruits in Some Rose (Rosa Spp.) Species. Food Chem., 104, 1379–1384, 2007.
83. Hu, Q.F., Zhou, B., Huang, J.M., Jiang, Z.Y., Huang, X.Z., Yang, L.Y., Gao, X.M., Yang, G.Y., Che, C.-T., Cytotoxic oxepinochromenone and flavonoids from the flower buds of Rosa rugosa. J. Nat. Prod., 76, 1866–1871, 2013.
84. Gao, X.M., Shu, L.D., Yang, L.Y., Shen, Y.Q., Zhang, Y.J., Hu, Q.F., Phenylethanoids from the flowers of Rosa rugosa and their biological activities. Bull. Korean Chem. Soc., 34, 246–248, 2013.
85. Nowak, R., Olech, M., Pecio, Ł., Oleszek, W., Los, R., Malm, A., Rzymowska, J., Cytotoxic, anti-oxidant, antimicrobial properties and chemical composition of rose petals: Biological activity and chemical composition of rose petals. J. Sci. Food Agric., 94, 560–567, 2014.
86. Schmitzer, V., Veberic, R., Osterc, G., Stampar, F., Changes in the phenolic concentration during flower development of rose ‘KORcrisett’. J. Am. Soc. Hortic. Sci., 134, 491–496, 2009.
87. Clifford, M.N., Anthocyanins. Nature, occurrence and dietary burden. J. Sci. Food Agric., 80, 1063–72, 2000.
88. Hirulkar, N.B. and Agrawal, M., Antimicrobial activity of rose petals extract against some pathogenic bacteria. Int. J. Pharm. Biol. Arch., 1, 478–484, 2010.
89. Park, D., Jeon, J.H., Kwon, S.C., Shin, S., Jang, J.Y., Jeong, H.S., Lee, D.I., Kim, Y.B., Joo, S.S., Antioxidative activities of white rose flower extract and pharmaceutical advantages of its hexane fraction via free radical scavenging effects. Biochem. Cell Biol., 87, 943–952, 2009.
90. Prata, G.G.B., Oliveira de Souza, K., Lopes, M.M.A., Oliveira, L.S., Aragao, F.A.S., Alves, R.E., Silva, S.M., Nutritional Characterization, Bioactive Compounds and Antioxidant Activity of Brazilian Roses (Rosa spp.). J. Agr. Sci. Tech., 19, 929–941, 2017.
91. Brown, E. and Akré, J., (Eds.). World Health Organization WHO/NUT/96.10 Geneva, Switzerland, 2000.
92. Kaur, C. and Kapoor, H.C., Antioxidants in Fruits and Vegetables. The Millennium’s Health: Int. J. Food Sci. Technol., 36, 703–725, 2008.
93. Jiménez-Zamora, A., Pastoriza, S., Rufián-Henares, J.A., Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT—Food Sci. Technol., 61, 12–18, 2015.
94. Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H.A., Dave Oomah, B., Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol., 45, 24–36, 2015.
95. Mussato, S.I., Machado, E.M.S., Martins, S., Teixeira, J.A., Production, composition and application of coffee and its industrial residues. Food Bioprocess Technol., 4, 661–672, 2001.
96. Pastoriza, S. and Rufián-Henares, J.A., Contribution of melanoidins to the antioxidant capacity of the Spanish diet. Food Chem., 164, 438–445, 2014.
97. Wang, Y.B., Prebiotics: present and future in food science and technology. Food Res. Int., 42, 8–12, 2009.
98. Şahin, S. and Bilgin, M., Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric., 98, 1271–1279, 2018.
99. Jiménez, P., Masson, L., Barriga, A., Chávez, J., Robert, P., Oxidative stability of oils containing olive leaf extracts obtained by pressure, supercritical and solvent-extraction. Eur. J. Lipid Sci. Technol., 113, 497–505, 2011.
100. De Vos, P., Faas, M.M., Spasojevic, M., Sikkema, J., Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J., 20, 292–302, 2010.
101. Martín-Vertedor, D., Garrido, M., Pariente, J.A., Espino, J., Delgado-Adámez, J., Bioavailability of bioactive molecules from olive leaf extracts and its functional value. Phytother. Res., 30, 1172–1179, 2016.
102. Lin, P., Qian, W., Wang, X., Cao, L., Li, S., Qian, T., The biotransformation of oleuropein in rats. Biomed. Chromatogr., 27, 1162–1167, 2013.
103. Kendall, M., Batterham, M., Callahan, D.L., Jardine, D., Prenzler, P.D., Robards, K., Ryan, D., Randomized controlled study of the urinary excretion of biophenols following acute and chronic intake of olive leaf supplements. Food Chem., 130, 651–659, 2012.
104. López de las Hazas, M.C.L., Piñol, C., Macià, A., Romero, M.P., Pedret, A., Solà, R., Rubió, L., Motilva, M.J., Differential absorption and metabolism of hydroxytyrosol and its precursors oleuropein and secoiridoids. J. Funct. Foods, 22, 52–63, 2016.
105. Mosele, J.I., Martín-Peláez, S., Macià, A., Farràs, M., Valls, R.M., Catalán, U., Motilva, M.J., Faecal microbial metabolism of olive oil phenolic compounds: In vitro and in vivo approaches. Mol. Nutr. Food Res., 58, 1809–1819, 2014.
106. Zhishen, J., Mengcheng, T., Jianming, W., The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 64, 555–559, 1999.
107.